THE No. 1 MAGAZINE FOR ELECTRONICS TECHNOLOGY \& COMPUTER PRONECTS

CAN \$6.99/US \$4.95

DOOR DEFENDER Battery operated door alatm PICAYE PRONECTS Temperature Sensor Voitige Sensor, W Display

EPE HM:BRID COMPUTAR - Part 2

ALTERTATIVE USES FOR TRANSETORS

Copyright © 2002, Wimborne Publishing Ltd (Allen House, East Borough, Wimborne, Dorset, BH21 1PF, UK)

and TechBites Interactive Inc., (PO Box 857, Madison, Alabama 35758, USA)

All rights reserved.

WARNING!

The materials and works contained within EPE Online - which are made available by Wimborne Publishing Ltd and Maxfield \& Montrose Interactive Inc are copyrighted. You are permitted to make a backup copy of the downloaded file and one (1) hard copy of such materials and works for your personal use. International copyright laws, however, prohibit any further copying or reproduction of such materials and works, or any republication of any kind.

Maxfield \& Montrose Interactive Inc and Wimborne Publishing Ltd have used their best efforts in preparing these materials and works. However, Maxfield \& Montrose Interactive Inc and Wimborne Publishing Ltd make no warranties of any kind, expressed or implied, with regard to the documentation or data contained herein, and specifically disclaim, without limitation, any implied warranties of merchantability and fitness for a particular purpose.

Because of possible variances in the quality and condition of materials and workmanship used by readers, EPE Online, its publishers and agents disclaim any responsibility for the safe and proper functioning of reader-constructed projects based on or from information published in these materials and works. In no event shall Maxfield \& Montrose Interactive Inc or Wimborne Publishing Ltd be responsible or liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or any other damages in connection with or arising out of furnishing, performance, or use of these materials and works.

GAS MASKS RUSSIAN, new and boxed, NATO filter, £39.
CCTV SYSTEM. Low cost, outdoor, IR illumination, complete with cables and p.s.u. Hust £22.99. Ret CCTVCAM3.
LOW COST NIGHT VISION system, Russian handheld complete with infra-red illuminator, 100 m range. Runs on 2 AA batteries, just
$£ 109.95$.
COBRA NIGHT VISION equipment also stocked, more info on our web site at www.cobra-optics.co.uk.
ELECTRIC SCOOTERS $18 \mathrm{kph}, 24 \mathrm{~V}$
ELECTRIC SCOOTERS $18 \mathrm{kph}, 24 \mathrm{~V}$ motor, 6 hour charge time, 22 kg weight, max load 90 kg , running time up to 1 hour, range
$15 \mathrm{~km}, 8.5 \mathrm{~A}$ motor, 24 V , direct drive. Our Price $£ 229.95$. Ref
ESCOOT. mouthpiece and you can adjust your voice using the controls on the unit. Battery operated, $£ 15$. Ref CC3.
LIGHTWEIGHT DOME TENTS. $120 \mathrm{~cm} \times 210 \mathrm{~cm}$, £8. Ref TENTA. EMMINENCE LOUDSPEAKERS 12in. dia., 50W nom, 100W peak, 16 ohm impedance. Pack of 4 just $£ 19.95$. Ref SPEAKK39.
PIR SECURITY SWITCHES These brand new swivel mounting PIR units will switch up to 2 kilowatts. Adjustable sensitivity, light level and time delay (9 seconds to 10 minutes), 15 m detection range, mains operated, waterproof. $£ 5.99$ Ref PIR1PACK or a
pack of 5 for $£ 22.95$ Ref PIR5PACK or 10 for $£ 39.95$ Ref 12V 12Ah SEALED LEAD-ACID BATTERIES, $100 \mathrm{~mm} \times 150 \mathrm{~mm}$ $\times 95 \mathrm{~mm}, 4 \mathrm{~kg} . £ 15$ each. Ref SSLB.
SEALED LEAD-ACID CHARGER AND FLOAT CHARGER. Complete unit will charge 12 V lead acids and maintain them with an automatic trickle charge. Charger on its own is $£ 15$ Ref LAC or charger and a 12V 12Ah battery (all fully cased) is $£ 25$ Ref ACB.
AERIAL PHOTOGRAPHY KIT. This rocket comes with a built-in AERIAL PHOTOGRAPHY KIT. This rocket comes with a built-in
camera! It flies up to 500 feet (150 m), turns over and takes an aerial photograph of the ground below. The rocket then returns with its film
via its parachute. Takes 110 film. Supplied with everything including via its parachute. Takes 110 film. Supplied with everything including
a launch pad and 3 motors (no film). £29.98 Ref Astro. a launch pad and 3 motors (no film). £29.98 Ref Astro.
BUILD YOUR OWN WINDFARM FROM SCRAP New
BUILD YOUR OWN WINDFARM FROM SCRAP. New publication
gives step-by-step guide to building wind generators and propelgives step-by-step guide to building wind generators and propel-
lors. Armed with this publication and a good local scrapyard could make you self-sufficient in electricity! £12. Ref LOT81.
MAGNEIIC CREDIT CARD READERS, $£ 9.95$. Cased with flyleads, designed to read standard credit cards! Complete with control electronics p.c.b. and manual covering everything you could
want to know about what's hidden in that magnetic strip on your want to know about what's hidden in that magnetic strip on your
card! Just £9.95 Ref BAR31. 77 KILO LIFT MAGNET. These Samarium magnets measure $57 \mathrm{~mm} \times 20 \mathrm{~mm}$ and have a threaded hole ($5 / 16 \mathrm{th}$ UNF) in the centre and a magnetic strength of 2.2 gauss. We have tested these on
a steel beam running through the offices and found that they will a steel beam running through the offices and found that they wif.
take more than 170 lb . (77 kg) in weight before being pulled off. Supplied with keeper. £19.95 ea. Ref MAG777.
gen storage and production. Practical plans to build hydrogen fuel gen storage and production. Practical plans to build hydroge
cell (good workshop facilities required). £8 set. Ref FCP1.
STIRLING ENGINE PLANS. Interesting information STIRLING ENGINE PLANS. Interesting information pack covering all aspects of Stirling engines, pictures of home made engines made from an aerosol can running on a candle! $£ 12$ STIR2.
12V OPERATED SMOKE BOMBS. Type 3 is a 12 V trigger and 3 12V OPERATED SMOKE BOMBS. Type 3 is a 12 V trigger and 3
smoke cannisters, each cannister will fill a room in a very short
space of time! $£ 14.99$. Ref SB3. Type 2 is 20 smaller cannisters smoke cannisters, each cannister wil 2 is 20 smaller cannisters
space of time! $£ 14.99$. Ref SB3. Type 2 in
(suitable for mock equipment fires etc.) and 1 trigger module for (suitable for mock equipment fires etc.) and 1 trigger module for
$£ 29$. Ref SB2. Type 1 is a 12 V trigger and 20 large cannisters, $£ 49$. RRAND NEW NATO ISSUE RADIATION DETECTORS, SALE PRICE JUST £69.95. Current NATO issue standard emergency services unit. Used by most of the world's military personnel. New
and boxed. Normal retail price $£ 400$, Bull's bargain price just £69.95. Ref PDRM.
INFRA-RED REMOTE CONTROL WATCHES, £16.99.
VIBRATING WATCHES, vibrate when your phone rings, $£ 16.99$.
STEPPER MOTORS. Brand new stepper wwotors, 4 mm fixing holes with 47.14 mm fixing centres, 20 mm shaft, 6.35 mm diameter, $5 \mathrm{~V} / \mathrm{phase}, 0.7 \mathrm{~A} /$ /phase, 1.8 deg. step (200 step). Body $56 \mathrm{~mm} \times$
36 mm .14 .99 each. Ref STEP6, pack of 4 for $£ 49.95$.
BASIC GUIDE TO LOCKPICKING. New publication gives you an
insight! £6, Ref LPK.
NEW HIGH POWER MINI BUG. With a range of up to 800 metres and 3 days use from a PP3 this is our top selling bug! Less than in. square and a 10 m voice pick-up range. £28. Ref LOT102. R LAMP KIT. Suitable for CCTV cameras, enables the camera to be used in total darkness! £6. Ref EF138.
INFRA-RED POWERBEAM. Handheld batt
reflector, gives out powerful pure infra-red light! Perfect for CCTV use, nightsights, etc. £29. Ref PB1. Comprehensive plans with loads of info on designing systems, panels, control electronics etc. $£ 7$. Ref PV1.
200 WATT INVERTERS, plugs straight into
lighter socket and is fitted with a 13 A socket so your car cigarette mains operated devices from your car battery. £49.95. Ref SS66. THE TRUTH MACHINE. Tells if someone is lying by micro tremors in their voice, battery operated, works in general conversation and on the 'phone and TV as well!, $£ 42.49$. Ref TD3.
INFRA-RED FILM. 6in. square piece of flexible infra-red film that
will only allow IR light through. Perfect for converting ordinary will only allow IR light through. Perfect for converting ordinary
torches, lights, headlights etc. to infra-red output using only stantorches, lights, headlights etc. to infra-red output using only stan-
dard light bulbs. Easily cut to shape. 6in. square. £15. Ref IRF2 or
a 12 in. square for $£ 29.95$. Ref IRF2A. a 12 in. square for $£ 29.95$. Ref IRF2A
SMOKE ALARMS. Mains powered, made by the famous Gent company, easy fit next to light fittings, power point. Pack of $5 £ 15$,
Ref SS23, pack of $12 £ 24$, Ref SS24. Ref SS23, pack of
CCTV CAMERAS FROM $£ 25$. Check out our
www.cctvstuff.co.uk and www.home-cctv.co.uk.
www.cctvstuff.co.uk and www.home-cctv.co.uk. 14 WATT SOLAR PANELS. Amorphous silicon panel fitted in an anodised aluminium frame. Panel measures 3 ft . by 1 ft . with 3 m leads for easy connection. 3 ft x $\times 1 \mathrm{ft}$. solar panel $£ 79$. Ref MAG45.
Unframed 4 pack, $8-9 \mathrm{~W}$ (ft x 1 ft) $£ 99$, Ref SOLX. 35 watts of solar power for just $£ 99.4$ panels, each one 3 ft . $\times 1 \mathrm{ft}$. and prosolar power for just $£ 99$. 4 panels, each one 3 ft.
ducing 8 W min., 13 V . Pack of four $£ 99$, Ref SOLX.

AIR RIFLES FROM LESS THAN £40, CROSSBOWS, WIDE RANGE OF BB GUNS, AMMO, TARGETS, PISTOLS, REPLICA GUNS, UZI MACHINE GUN REPLICAS (BB), REPEATERS, LASER

SIGHTS, ELECTRIC BB, GAS BB www.airpistol.co.uk

- iNKJETCARTRIIGES FROM JUST £3 AT www.officebits.co.uk

POWERSAFE DEEP CYCLE BATTERIES

6V 100AH NOW ONLY £19 EACH

NEW 12V 12in. SQUARE SOLAR PANEL. Kevlar backed, 3 watt output, copper strips for easy solder connections. £14.99 Ref
15P42. Pack of four just £39.95, Ref 15P42SP.
NEW UNIVERSAL SOLAR CHARGER. Charges AAAs, AAs, Cs NEW UNIVERSAL SOLAR CHARGER. Charges AAAs, AAs, Cs and D-type NiCads. £9.99, Ref UNISOL
12V SOLAR POWER WATER PUMP. Perfect for many 12 V d.c. uses, from solar fountains to hydroponics! Small and compact yet HD: 17 ft , max flow $=8 \mathrm{Lpm}, 1.5 \mathrm{~A}$. Ref AC88. $£ 18.99$.
SOLAR MOTORS. Tiny motors which run quite happily on voltages SOLAR MOTORS. Tiny motors which run quite happily on voltages from 3 V -12V d.c. Works on our 6 V amorphous 6in. panels and you can run them from the sun! 32 mm dia.i, 2 mm thick. $£ 1.50$ each.
MAMOD STEAM ENGINES and a full range of spare parts. Check MAMOD STEAM ENGINES and a full range of spare parts. Check both radar and laser, X, K and KA bands, speed cameras and all known speed detection systems. 360 degree coverage, front and rear waveguides, $1 \cdot 1 \mathrm{in} . \times 2.7 \mathrm{in} . \times 4 \cdot 6 \mathrm{in}$, fits on visor or dash, new
low price $£ 99$ Ref WH1630. Other models available at
www.radargun.co.uk. www.radargun.co.uk.
BUG DETECTORS. A new detector at a sensible price! Detects bugs hidden in rooms, computers etc., between $1-200 \mathrm{MHz}$,
adjustable sensitivity, $9 V$ PP3 battery required. $£ 29.95$, Ref
GDET2. GIANT WEATHER BALLOONS made by Totex, we blew one up to 7 ft . diameter then it popped due to stones on the ground! $£ 13.99$, BARNET CROSSBOWS. We stock the entire range of crossbows, check out our web site at www.xbows.co.uk.
HOT AIR BALLOON KITS. Everything you need to build a 1.7 m high, 4.5 m in circum. hot air balloon, launch over a small burner or heater. £12.49, Ref HA1. blades driven around by the sun, £9.99, Ref SC120B.
GIANT TV OR PC VIEWING SCREEN. Turn your TV into a supersize screen, converts small screens into a super size 26in. £26.99, RADIOSONDES. Made by Valsala, unused, they measure pres-
sure, temperature and humidity. Model RS80, good stripper at $£ 15$, Ref SONDE. power from the wind, 1.14 m blade, 12 V d.c. output, 3 year warranty, built-in battery regulator. £549, Ref AIR1.
WORMERIES. The ideal solution for your kitchen waste! Supplied omplete with worms. Turn your rubbish into liquid feed! Two sizes vailable, small (ideal for 1-2 people), £25.45, Ref WM2, and a
COMPLETE WIRELESS CCTV SYSTEM. Includes monitor, camera, up to 100 m range, audio and video, UK legal, complete with infra-red lights. £169, Ref WMS333.
PELTIER MODULES. $56 \mathrm{~W}, 40 \mathrm{~mm} \times 40 \mathrm{~mm}, 16 \mathrm{~V}$, sealed edges,
new and boxed. Supplied with 18 -page Peltier design new and boxed. Supplied with 18-page Peltier design manual fea-
turing circuit designs, design information etc. 1 module and manual is $£ 29.99$, Ref PELT1, pack of 4 modules. and manual is $£ 99.99$, Ref PELT2. The manual on its own is $£ 4$, Ref PELT3.
DC MOTOR. 12 V d.c., general purpose model motor, $70 \mathrm{~mm} \times \mathrm{x}$
$50 \mathrm{~mm}, 12 \mathrm{~V}$ d.c., permanent magnet, $4 \mathrm{~mm} \times 25 \mathrm{~mm}$ shaft $£ 6$, Ref $50 \mathrm{~mm}, 12 \mathrm{~V}$ d.c., permanent magnet, $4 \mathrm{~mm} \times 25 \mathrm{~mm}$ shaft. $£ 6$, Ref GPM1, pack of 10 is just $£ 40$, Ref GPM2.
180R.P.M. MAINS MOTOR. Induction type, $90 \mathrm{~mm} \times 70 \mathrm{~mm}, 50 \mathrm{~mm}$
$\times 5 \mathrm{~mm}$ shaft, 12 A continuous rating, thermal protected. £22, Ref MGM1. SOLID-STATE RELAYS. P.C.B. mounting, these relays require 3 V
to 32 V d.c. to operate but will switch up to 3 A a.c. mains. Pack of £5, Ref SPEC1B.
12V RELAYS. $2 \times 2 \mathrm{c} / \mathrm{o}$ 16A contacts p.c.b. mount (will fit Vero),
tray of 25 relays for just $£ 9.95$, Ref SPEC1.
VENNER TIME CONTROLS. Designed to be wired in permanently they will switch up to 16A 240 V a.c. motorised with dial and pins. New and boxed. $£ 15$, Ref VTS.
GYROSCOPES. We still sell original 1917 design, hours of fun for GYROSCOPES. We still sell original 1917 design, hours of fun for
all the family, complete with stand, string, box and info. $£ 6$, Ref all the family, complete with stand, string, box and info. £6, Ref
EP70.
INNATIONS. We also sell a wide range of innovative products or the home, these are at www.seemans.com.
NVERTERS. Convert 12 V d.c. into 240 V mains (modified sine wave), 300 watt (150 watt continuous), £59.95, Ref VER3. 600 10 WATT SILICON SOLAR PANEL, 10 year life. 10 WATT SILICON SOLAR PANEL, 10 year life, waterproof, STICKY LABELS. Small address labels etc. are very useful and can be ordered online at www.stickon.co.uk.
-WAY MIRROR KIT. Contains enough material to make up to a $500 \mathrm{~mm} \times 2200 \mathrm{~mm}$ mirror (excl. glass), full instructions. $£ 19.95$, Ref WF RI
22 AIR RIFLE. Under lever type, powerful Chinese training rifle, 22 AIR RIFLE STANDARD TYPE. Chinese training $l i m i t$ for air rifles, $£ 29.75$, Ref A1040. Pellets $£ 2.68$, Ref A1091.

BULL ELECTRICAL

UNIT D, HENFIELD BUSINESS PARK HENFIELD, SUSSEX BN5 9SL TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS $£ 5.50$ P\&P (UK) PLUS VAT 24 HOUR SERVICE $£ 7.50$ (UK) PLUS VAT OVERSEAS ORDERS AT COST PLUS $£ 3.50$ (ACCESS/VISA/SWITCH ACCEPTED
'phone: 01273491490 Fax 491813 Sales@bullnet.co.uk

SHUT THE BOX. Check out
ub games and magic tricks.
WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manuals that give you information on setting up different businesses, you peruse these at your leisure using the text editor on your PC. Also included is the certificate nabling you to reproduce (and sell) the manuals as much as you like! £14, Ref EP74.
ANICS CO2 GAS POWERED PISTOL. Russian handheld pistol powered by Sparklets CO2 cylinders (give approx. 70 shots), fires steel BB. Pistol $£ 58.22$, Ref AGA101, tub of 1,500 BB shot $£ 5.10$, Ref A1015, pack of 5 CO2 cartridges $£ 3.50$, Ref GAS5. bolt on the back for easy mounting. Each magnet will lift a 33 kilos 4 magnets bolted to a plate will lift an incredible 132 kilos! $£ 15$, Ref MAG33. Pack of 4 just $£ 39$, Ref MAG33AA.
BSA METEOR AIR RIFLE. UK made .22 rifle, top quality professional air rifle, $£ 84.15$, Ref BSAMET 500 Lazapell pellets $£ 5$, Ref AZAPELL.
MAMOD 1313 TE1A TRACTION ENGINE. Attractive working model of traditional steam engine, £91, Ref 1313.
MAMOD STEAM ROADSTER (white), magnificent working steam model car, £121, Ref 1319.
MAMOD STEAM WAGON. Working model steam wagon finished
in blue. $£ 130$, Ref 1318. Brown version (with barrels), $£ 122$, Ref POCKE
OOCKET SPY MONOCULAR. Clever folding monocular with $8 \times$ 21 magnification, made by Helios, with case. $£ 14.99$, Ref MONOC. CCTV SYSTEMS, $£ 24.99$. Complete with camera, 20 metres of Cable, p.s.u. and info, simple connection to scart, $£ 24.99$. Ref
FCTVCAM2. TONER CARTRIDGES FOR COPIERS AND PRINTERS can be bought online at www.nationaltoners.co.uk.
VELOSOLEX. Traditional French style two-stroke moped (engine over front wheels), black only, £695, Ref VELO. Delivered direct in a box, you need to fit the pedals etc. then register it with your local

HYDROPONIC GROWING SYSTEMS. Complete, everything you need apart from plants and light, contains grow tank, nutrients, pump, tester etc. GT205 $710 \mathrm{~mm} \times 390 \mathrm{~mm}$, NFT system, $£ 31.45$, Ref GT24.
ELECTRIC BIKES, £679, Viking, built-in indicators, radio, lights, $13 \mathrm{mph}, 5$ hour charge, Shimano gears, up to 50 mile range, horn Rin. wheels, NEBULISER, WATER ATOMISER. Ultrasonic module that you place in water, atomises the water into a very fine mist, many
applications from special effects to scientific. £69, Ref NEB6. PORTABLE X-RAY MACHINE PLANS. Easy to construct plans on a simple and cheap way to build a home X-ray machine Efective device, X-ray sealed assemblies, can be used for expe TELEKINETIC ENHANCER PLANS. Mystify and amaze yo friends by creating motion with no known apparent means or cause. Uses no electrical or mechanical connections, no special gimmicks yet produces positive motion and effect. Excellent for science projects, magic shows, part demonstrations or serious research and development of this strange and amazing psychic ELECTRONIC HYPNOSIS PLAN
eral ways to put subies under \& DATA. This data shows sev eral ways to put subjects under your control. Included is a full volassembled can produce highly effective stimuli. This material must be used cautiously. It is for use as entertainment at parties etc only, by those experienced in its use. $£ 15 /$ set, Ref F/EH2.
GRAVITY GENERATOR PLANS. This unique plan demonstrates a simple electrical phenomena that produces an anti-gravity effect. You can actually build a small mock spaceship out of simple mate-
rials and without any visible means cause it to levitate. $£ 10 /$ set, Ref rials and without any visible means cause it to levitate. $£ 10 /$ set, Ref TESLA COIL/LIGHTNING DISPLAY GLOBE PLANS. Produces up to 750,000 volts of discharge, experiment with extraordinary HV effects, 'Plasma in a jar', St Elmo's fire, corona, excellent
project or conversation piece. £5/set, Ref F/BTC1/LG5.
COPPER VAPOUR LASER PLANS. Produces 100 mW of visible green light. High coherency and spectral quality similar to argon green light. High coherency and spectral quality similar to argon particular design was developed at the Atomic Energy particular design was developed at the Atomic
Commission of NEGEV in Israel. £10/set, Ref F/CVL1.
VOICE SCRAMBLER PLANS. Miniature solid-state system turns speech sound into indecipherable noise that cannot be underhird party listening and bugging. $£ 6 /$ set, Ref F/VS9
PULSED TV JOKER PLANS. Little handheld device utilises pulse echniques that will completely disrupt TV picture and sound: Works on FM too! Discretion advised. £8/set, Ref F/TJ5.
BODYHEAT TELESCOPE PLANS. Highly directional long ange device uses recent technology to detect the presence of living bodies, warm and hot spots, heat leaks etc. Intended for security, law enforcement, research and development etc. Excellent security device or very interesting science project.
$£ 8 /$ set, Ref $\mathrm{F} / \mathrm{BH} 11$. BURNING, CUTTING CO2 LASER PLANS. Projects an invisible beam of heat capable of burning and melting materials over a coning 10% input power into useful output Not only is this device a ghore in welding cutting and heat processing materials, but it is also a likely candidate as an effective directed energy beam weapon against missiles, aircraft, ground-to-ground etc. Burning and etching wood, cutting, plastics, textiles etc. $£ 12 /$ set, Ref
MICRO SCALES. Measure 1 g to 120 g , 1 g resolution, $80 \mathrm{~mm} \times$ $110 \mathrm{~mm}, 3$ AAA batteries required. £49.94. Ref SCALEB. ALTERNATIVE ENERGY CD, packed with hundreds of alternative energy related articles, plans and information etc. $£ 14.50$. Ref WIRELESS DRIVEWAY ALARMS. Detect someone entering your driveway, 400 ft . range, no wiring, will protect any entrance, uses built-in PIR detector. £24.99. Ref DWA.
NICKEL PLATING KITS. £55. Ref NIK39A.
GOODIE PACKS. 10 kg packs of clearance items, mainly suitable WHEFLCHAIR MOTORS. Left and right
hand 100 in seck Now returns $£ 19.95$. Geared, 24 V , complete with electric brake.
www.bullnet.co.uk

ISSN 02623617
PROJECTS . . . THEORY . . . NEWS . . .
COMMENTS . . . POPULAR FEATURES . . .

VOL. 31. No. 12 DECEMBER 2002 Cover illustration by jgr22

www.epemag.wimborne.co.uk EPE Online: www.epemag.com

© Wimborne Publishing Ltd 2002. Copyright in all drawings, photographs and articles published in EVERYDAY PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

Projects and Circuits

VERSATILE PIC FLASHER by Steve Challinor
An attractive display to enhance your Christmas decorations or your child's ceiling
INGENUITY UNLIMITED hosted by Alan Winstanley 862
Fluid Finder; Switched Mode L.E.D. Nightlight
DOOR DEFENDER by Steve Dellow
864
Keep an armed guard on your door or valuables
PICAXE PROJECTS - Part 2. Temperature Sensor, Voltage Sensor
and VU Indicator by Max Horsey
The second of a 3-part series using PICAXE devices - PIC microcontrollers that do not need specialist knowledge, or programming equipment
EPE HYBRID COMPUTER - Part 2 by Petros Kronis 896
Real-time computation of complex system behaviour is greatly simplified
by combining analogue and digital processing techniques

Series and Features

NEW TECHNOLOGY UPDATE by lan Poole
Newly developed, Spin transistors have potential applications in areas from non-volatile memories to magnetic sensors
NET WORK - THE INTERNET PAGE surfed by Alan Winstanley 858
Tune in to WorldSpace; Email Filtering again
ALTERNATIVE USES FOR TRANSISTORS by Ned Stephens $\mathbf{8 6 9}$
A look at the other uses to which transistors can be applied
INTERFACE by Robert Penfold 882
Choosing and using Visual BASIC
CIRCUIT SURGERY by Alan Winstanley and Ian Bell 890
Measuring high side and low side currents in op.amps;
differences in common electric motors
ELECTRONIC PAPER by lan Graham 895
After more than 20 years of research, manufacturers seem to have
cracked the problem of making electronic paper

Regulass and Sepoices

ELECTRONICS MANUALS 846
Essential reference works for hobbyists, students and service engineers EDITORIAL 851
NEWS - Barry Fox highlights technology's leading edge 859
Plus everyday news from the world of electronics
SHOPTALK with David Barrington 863
The essential guide to component buying for EPE projects
PLEASE TAKE NOTE Digital I.C. Tester; Wien Oscillator (IU) 863
BACK ISSUES Did you miss these? Many now on CD-ROM! 884
READOUT John Becker addresses general points arising 887
CD-ROMS FOR ELECTRONICS 892
A wide range of CD-ROMs for hobbyists, students and engineers DIRECT BOOK SERVICE 904
A wide range of technical books available by mail order, plus more CD-ROMs 907
PRINTED CIRCUIT BOARD AND SOFTWARE SERVICE 909
PCBs for EPE projects. Plus EPE project software
ADVERTISERS INDEX 912
 Zero Power' memory which greatly simplifies desgn. Practical Electronics' magazine. Ideal School/ College construction pay te with data shee
Less than 30% Only $£ 29.95$ (B) or $4 / £ 99.00$ (D)
of makers rice

THE AMAZING TELEBOX

Converts your colour monitor into a QUALITY COLOUR TV!! The TELEBOX is an attractive fully cased mains powered unit, containing all are fitted with a composite video or SCART input. The composite video output
will also plug directly into most video recorders, allowing reception of TV channels not normally receivable on most television receivers* (TELEBOX MB). Push button controls on the front panel allow reception of 8 fully tuneable vision frequencies VHF and UHF including the HYPERBAND as used by most cable TV operators. Ideal for desktop computer video systems \& without sound - an integral 4 watt audio amplifier and low level Hi Fi audio output are provided as standard. Brand new - fully guaranteed. TELEBOX ST for composite video input type monitors ELEBOX STL as ST but fitted with integral speaker TELEBOX MB Multiband VHF/UHF/Cable/Hyperband tuner $\begin{aligned} & \text { £39.5 } \\ & \text { £69.95 }\end{aligned}$ State of the art PAL (UK spec) UHF TV tuner module
with composite 1 Vpp video \& NICAM hi fi stereo sound its. Micro electronics all on one small PCB only
pc type computer. Supplied complete with simple working program ee www.distel.co.uk/data my00.htm for picture + full details

IC's -TRANSISTORS - DIODES OBSOLETE- SHORT SUPPLY - BULK
000,000 items EX STOCK 10,000,000 items EX STOCK

COMPUTER MONITOR SPECIALS

 Legacy products High spec genuine multysync. CGA, EGA, VGA, SVGAMitsubishi FA3415ETKL 14 " SVGA Multisync colour monitor with fine 0.28
 inputs alows connection to a host of computers including COMMODORE, (including taceplate, text switching and Low RADIATTON MPR VGA cable for IBM PC included. Only £129 (E) $\begin{gathered}\text { Order as } \\ \text { CG73 }\end{gathered}$ External cables for other types of computers available - CALL Generic LOW COST SVGA Monitors Mitsubishi, IBM, etc. Supplied ready to run with all

$\begin{gathered} 14^{\prime \prime} \\ £ 59.00 \end{gathered}$	$\begin{gathered} 15 " \\ £ 69.00 \end{gathered}$	$\begin{gathered} 17^{\prime \prime} \\ £ 79.00 \end{gathered}$

Supplied in good used condition. Shipping code (D)
 colour monitor with both RGB and standard composite 15.625 Khz video inputs via SCART socket and separate phono jacks.
Integral audio power amp and speaker for all audio visual uses. Will connect direct to Amiga and Atari BBC computers. Ideal for all
video monitoring / security applications with direct connection to most colour cameras. High quality with many features such as

PHILIPS HCS31 Ultra compact 9" colour video monitor with stan
dard composite 15.625 Khz video
fully tested \& guaranteed (possible min
Only $£ 79.00$

INDUSTRIAL COMPUTERS

Tiny shoebox sized industrial 40 Mhz 386 PC system measuring only (mm) 266 w X 88 h X 272 d. Ideal for dedicated control	
lications running DOS, Linux or even Windows ! Steel case	
ntains 85 to 265 V AC $50 / 60 \mathrm{hz} 70$ Watt PSU, a 3 slot ISA	
ackplane and a Rocky 318 (PC104) standard, single	
board computer with 8 MByte NON VOLATILE solid state 'Disk	
On Chip' RAMDISK. System comprises: Rocky 318 (PC104) SBC ISA card with 40 MHz ALi 386SX CPU, 72 pin SIMM slot with 16	
Mbyte SIMM, AMI BIOS, battery backed up real time clock. 2×9pin D 16550 serial ports. EPP/ECP printer port, mini DIN key-	
board connector, floppy port, IDE port for hard drives up to 528	
Byte capacity, watchdog timer and PC/104 bus socket. The 8	
3yte solid state 'disk on a chip' has its own BIOS, and can be	
fdisked, formatted \& booted. Supplied BRAND NEW fully tested and guaranteed. For full data see featured item on website. Order	
and guaranteed. For full data see featured item on website. Order as Q436.	

This month's special 33 / 42 / 47 U - High Quality All steel Rack Cabinets

Made by Eurocraft Enclosures Ltd to the highest possible

$\stackrel{33 \mathrm{U}}{\text { Ord }}$	$\stackrel{42 \mathrm{U}}{\text { Order as }}$	$\stackrel{47 \mathrm{U}}{\text { Order }{ }^{\text {as RV36 }}}$
Order as BC 44	Order as DT20	Order as RV36
External dimensions	External dimensions	External dimensions
$603 \mathrm{~W} .644^{\prime \prime} \mathrm{H} \times 25^{\prime \prime} \mathrm{D}$	$603 \mathrm{~W} .779 .5^{\prime \prime} \mathrm{H} \times 25^{\text {a }}$	603 W
	- $\times 23{ }^{3 / 4}$	-
Only	Only	Only
£245	£345	£410

Call for shipping quotation
 gives excellent focus and resolution posite video output will connect to any
composite monitor or TV (via SCART
socket) and most vide Socket) and most video recorders. Unit
runs from 12 V DC so ideal for security \&
portable applications where portable applications where mains
power not available. Overall dimensions guaranteed with user data, 100's of applications including Security

ONLY $£ 79.00$ or 2 for $£ 149.00$ (B)

SOFTWARE SPECIALS

NT4 WorkStation, complete with

and licence - OEM' packaged. ONLY £89.00 ENCARTA 95-CDROM, Not the latest - but at this price! (B) Windows for Workgroups $3.11+$ Dos 6.22 on 3.5 " disks ${ }^{2} 145.95$ Windows 95 CDROM Only - No Licence
Wordperfect 6 for DOS supplied on 312 " disks with manual $£ 24.95$

SOLID STATE LASERS

approx 50 mA . Orginally made for continuous use in industrial bar-
code scanners, the laser is mounted in a removable solid alumini-
\qquad over temperature shutdown, current control, laser OK ouput, and
gated TTL ON OFF. Many uses for experimental optics, comms \& ONLY £24.95 (A)

DC POWER SUPPLIES

Virtually every type of power supply you can imagine.Over 10,000 Power Supplies Ex Stock - Call or see our web site.

RELAYS - 200,000 FROM STOCK

HP DRAFTMASTER 18 pen high speed plotters
EG+G Brookdeal 95035 C Precision lock in amp
Keithley 590 CV capacitor / voltage analyser
Racal ICR40 dual 40 channel voice recorder system
Fiskers 45KVA 3 ph On Line UPS - New batteries
Mann Tally MT645 High speed line printer
Intel SBC 486/133SE Multibus 486 system. 8Mb Ram
£245
FARNELL ARNELL
KW th
IBM 8230 Type 1, Token ring base unit driver - ex stock
INFODEC 1U, 24 port, RJ45 network patchpanels. \#TH93 $\begin{array}{lll}3 C O M & 16671 & 24 \text { Port Ethernet hub - RJ45 connectors } \\ & £ 89\end{array}$ COM 167008 Port Ethernet hub - RJ45 connectors NEW £39 BM 53 F5501 Token Ring ICS 20 port lobe modules AIM 501 Low distortion Oscillator 9 Hz to 330 Khz , IEEE I/O ALLGON 8360.11805-1880 MHz hybrid power combiners Marconi 2022C 10KHz-1GHz RF signal gweep
HP3781A Pattern generator \& HP3782A Error Detector HP6621A Dual Programmable GPIB PSU 0-7 V 160 watts

\qquad ALL MAIL TO Thornton Heath
Surrey CR7 8PD
Open Mon - Fri 9.00-5:30

18 Million Items On Line Now! Secure ordering, Pictures, Informatio
Urisgm

EPE MINDER

Looks after your personal belongings - maybe even your children!

The EPE Minder consists of two type approved transmitter units and a receiver. If either transmitter becomes separated from the receiver, a buzzer in the latter part will sound. The receiver is fitted with a switch to allow the use of only one transmitter if required. This system was originally designed as a two-channel child alarm (to protect either a single child or two children at the same time) but many other applications spring to mind. For example, one transmitter could be placed inside a briefcase and another in a coat pocket. If the user forgot to pick up either of these items and walked away, the buzzer would sound in the receiver.
The operating range is adjustable and the system can operate over a range of up to 12 metres in the open air. It will also work throughout several rooms indoors if required.

PIC WIND SPEED MONITOR

This wind speed monitor (anemometer) is intended for use in a variety of sports-type activities, such as track events, sailing, hang-gliding, kite and model aircraft flying, to name but a few. It can even be used to monitor the wind conditions in your garden. Using ultrasonic techniques, it is a solid-state design, has no moving parts and does not need calibrating. It was designed and tested in conjunction with a commercial airflow sensor and a professional wind tunnel.
A probe is pointed in the direction from which the wind is blowing and a screen displays the rate at which the wind is moving between two ultrasonic sensors. The readout is on an alphanumeric liquid crystal display (I.c.d.), with readings shown in metres per second, feet per second, kilometres per hour and miles per hour. The resolution is to the nearest tenth of a metre per second, from zero up to around 50mph, and possibly higher.

F.M. FREQUENCY SURFER

A v.h.f. receiver covering the range 88 MHz to 119 MHz based on the TDA7000 i.c. which provides virtually all the active circuitry including phase-locked loop detection. In use, the receiver scans different types of transmissions in quick succession, including commercial wideband f.m. broadcasts, aeronautical communications, fixed and private mobile radio, Citizen's Band on the lower frequency channels and occasionally shortwave transmissions via satellite.

PLUS PICAXE PROJECTS PART 3 AND ALL THE REGULAR FEATURES

DON'T MISS AN ISSUE - PLACE YOUR ORDER NOW!

 Demand is bound to be high
JANUARY 2003 ISSUE ON SALE THURSDAY, DECEMBER 12

ロபasar $=$ Lectanancs LMTEロ

PO Box 6935, BISHOPS STORTFORD, Herts. CM23 4WF
TEL: 08717177168 FAX: 08712772728

PROJECT KITS

Our electronic kits are supplied complete with all components, high quality PCBs (NOT cheap Tripad strip board!) and detailed assembly/operating instructions

- 2×25 W CAR BOOSTER AMPLIFIER Connects to the output of an existing car stereo cassette player,
$C D$ player or radio. Heatsinks provided. PCB $76 \times 75 \mathrm{~mm}$. 1046 KT . £24.95
- 3-CHANNEL WIRELESS LIGHT MODULATOR No electrical connection with amplifier. Light modulation achieved via a sensitive electret microphone. Separate sensitivity control per channel. Power
handing $400 \mathrm{~W} /$ channel. PCB $54 \times 112 \mathrm{~mm}$. Mains powered. Box provided. 6014 KT £24.95
- 12 RUNNING LIGHT EFFECT Exciting 12 LED light effect ideal for parties, discos, shop-windows \& eye-catching signs. PCB design allows replacement
of LEDs with 220 V bulbs by inserting 3 TRIACs.
Adjustable $54 \times 112 \mathrm{~mm}$. $1026 \mathrm{KT} £ 15.95$; BOX (for mains operation) 2026BX £9.00
- DISCO STROBE LIGHT Probably the most exciting of all light effects. Very bright strobe tube. PCB: $60 \times 68 \mathrm{~mm}$. Box provided. 6037 KT §28.95
- ANIMAL SOUNDS Cat, dog, chicken \& cow. Idea or 3 I voltage/current displays or customise to measure temperature, light, weight, movement, sound levels, etc. with appropriate sensors (not supplied).
Various input circuit designs provided. 3061 KT
IR REMOTE TOGGLE SWITCH Use any TV/VCR emote control unit to switch onboard $12 \mathrm{~V} / 1 \mathrm{~A}$ relay on/off. 3058KT $£ 10.95$
SPEED CONTROLLER for any common DC motor up to $100 \mathrm{~V} / 5 \mathrm{~A}$. Pulse width modulation gives maximum
torque at all speeds. $5-15 \mathrm{VDC}$. Box provided. 3067 KT £12.95
- 3×8 CHANNEL IR RELAY BOARD Control eight 12V/1A relays by Infra Red (IR) remote control over a 20 m range in
sunlight. 6 relays turn on only, the other 2 toggle on/off. 3 opersunlight. 6 relays turn on only, the other 2 toggle on/off. 3 oper ation ranges determined by jumpers. Transmitter case \& all £52.95

PRODUCT FEATURE

COMPUTER TEMPERATURE DATA LOGGER PC serial port controlled 4 -channel temperature meter (elner deg or fr. Requires no external up to four temperature sensors located $200 \mathrm{~m}+$ from motherboard/PC. Ideal use for old 386/486 computers. Users can tailor input data stream to suit their purpose (dump it to a spreadsheet or write your own
BASIC programs using the INPUT command to grab the readings). PCB just $38 \mathrm{~mm} \times 38 \mathrm{~mm}$. Sensors connect via four 3-pin headers. 4 header cables supplied but only one DS18S20 sensor
ORDERING: 3145KT £23.95 (kit form) AS3145 £29.95 (assembled);
Additional DS18S20 sensors $£ 4.95$ each

- SOUND EFFECTS GENERATOR Easy to build. reate an almost infinite variety of interesting/unusu-
al sound effects from birds chirping to sirens. 9 VDC PCB $54 \times 85 \mathrm{~mm}$. 1045 KT £8.95
- ROBOT VOICE EFFECT Make your voice discos, school plays, theatre productions, radio stations \& playing jokes on your friends when
answering the phone! PCB $42 \times 71 \mathrm{~mm}$. 1131 KT answeri
$£ 8.95$
- AUDIO TO LIGHT MODULATOR Controls intensity of one or more lights in response to an audio input. Safe, modern opto-coupler design. Mains voltage - MUSIC BOX Activated by light. Plays 8 Christmas songs and 5 other tunes. 3104 KT £7.95
20 SECOND VOICE RECORDER volatile memory - no battery backup needed Record/replay messages over \& over. Playback as required to greet customers etc. Volume control \& built-in mic. 6 VDC . PCB $50 \times 73 \mathrm{~mm}$.
- TRAIN SOUNDS 4 selectable sounds: whistle blowing, level crossing bell, 'clickety-clack' \& 4 in sequence. SGOTM £6.9

x
 FACTOR
 PUBLICATIONS

THE EXPERTS IN RARE \& UNUSUAL INFORMATION!

Full details of all X-FACTOR PUBLICATIONS can be found in our catalogue. N.B. Minimum
is $£ 5.00$ PLUS normal P.\&P.

- SUPER-EAR LISTENING DEVICE Complete plans to build your own parabolic dish microphone. Listen to distant
voices and sounds through open windows and even walls! voices and sounds through open windows and
Made from readily available parts. ROO2 $£ 3.50$ Made from readily available parts. ROO2 $£ 3.50$
\bullet LOCKS - How they work and how to pick them. This fact - LOCKS - How they work and how to pick them. This fact
filled report will teach you more about locks and the art of ock picking than many books we have seen at 4 times the price. Packed with information and illustrations. RO08 $£ 3.50$ - RADIO \& TV JOKER PLANS

We show you how to build three different circuits for disrupting TV picture and sound plus FM radio! May upset your
neighbours \& the authorities!! DISCRETION REQUIRED. RO17 £3.50

- INFINITY TRANSMITTER PLANS Complete plans for building the famous Infinity Transmitter. Once installed on the target phone, device acts like a room bug. Just call the target
phone \& activate the unit to hear all room sounds. Great for home/office security! R019 $£ 3.50$
- THE ETHER BOX CALL INTERCEPTOR PLANS Grabs telephone calls out of thin air! No need to wire-in a phone
bug. Simply place this device near the phone lines to hear the conversations taking place! R025 $£ 3.00$
- CASH CREATOR BUSINESS REPORTS Need ideas for making some cash? Well this could be just what you need! You get 40 reports (approx. 800 pages) on floppy disk that
give you information on setting up different businesses. You
also get valuable also get valuable reproduction and duplication righ
you can sell the manuals as you like. R030 $£ 7.50$
- PC CONTROLLED RELAY BOARD

Convert any 286 upward PC into a dedicated automatic controller to independently turn on/off up to eight lights, motors \& other devices around the home, office, laboratory or factory. Each relay outpu
is capable of switching 250VAC/4A. A suite of DOS and Windows control programs are provided together with all components (except box and PC
cable). 12VDC. PCB $70 \times 200 \mathrm{~mm}$. $3074 \mathrm{KT} £ 31.95$ - 2 CHANNEL UHF RELAY SWITCH Contains the same transmitter/receiver pair as 30A15 below plus the components and PCB to control two $240 \mathrm{VAC} / 10 \mathrm{~A}$ relays (also supplied). Ultra bright LEDs used to indicate relay status. $\mathbf{3 0 8 2 K T} £ 27.95$ - TRANSMITTER RECEIVER PAIR 2-button keyfob style $300-375 \mathrm{MHz}$ Tx with 30 m range. Receiver encoder module with matched decoder 1C. above. 30A15 $£ 14.95$

- PIC 16C71 FOUR SERVO MOTOR DRIVER Simultaneously control up to 4 servo motors. Software \& all components (except servos/control pots) supplied. 5 VDC. PCB $50 \times 70 \mathrm{~mm}$. $3102 \mathrm{KT} £ 15.95$
- UNIPOLAR STEPPER MOTOR DRIVER for any $5 / 6 / 8$ lead motor. Fast/slow \& single step rates. Direction control \& on/off switch. Wave, 2-phase \& half-wave step modes.
$50 \times 65 \mathrm{~mm} .3109 \mathrm{KT}$ £14.95
- PC CONTROLLED STEPPER MOTOR DRIVER Control two unipolar stepper motors (3A max. each) via PC printer port. Wave, 2-phase \& hall-wave step modes. Software accepts 4 digital inputs from external switches \& will single step motors.
shell case provided. $3113 \mathrm{KT} £ 17.95$
- 12-BIT PC DATA ACQUISITION/CONTROL UNIT Similar to kit 3093 above but uses a 12 bit Analogue-to-Digital Converter (ADC) with internal analogue ferential inputs or a mixture of both. Analogue inputs read $0-4 \mathrm{~V}$. Four TTL/CMOS compatible digital input/outputs. ADC conversion time <10uS. Software (C, QB \& Win), extended D shell case \& all components
£52.95
- LIQUID LEVEL SENSOR/RAIN ALARM Will indicate fluid levels or simply the presence of fluid. Relay output to control a pump to add/remove water when it - AM a certain level. 1080KT $£ 5.95$
end, single chip AM radio IC \& 2 stages of frontamplification. All components inc speaker provided. PCB $32 \times 102 \mathrm{~mm}$. 3063KT $£ 10.95$
- DRILL SPEED CONTROLLER Adjust the speed of your electric drill according to the job at hand.

SURVEILLANCE

High performance surveillance bugs. Room transmitters supplied with sensitive electret microphone \& battery holder/clip. All transm eirs can be received on an ordinary VHF/FM radio between 88-108MHz. Available in Kit Form (KT) or Assembled \& Tested (AS).

ROOM SURVEILLANCE

- MTX - MINIATURE 3V TRANSMITTER Easy to build \& quar anteed to transmit 300 m @ 3V. Long battery life. 3-5V operation Only $45 \times 18 \mathrm{~mm}$. B B 3007 KT £6.95 AS3007 £11.9
MRTX - MINIATURE $9 V$ TRANSMITTER Our best selling bug. Super sensitive, high power-500m range @ 9V (over 1 km with

HPTX - HIGH POWER TRANSMITTER High performance, stage transmitter grage transmitter give ity reception. 1000 m range 6 -
12 V DC operation. Size $70 \times 15 \mathrm{~mm}$. 3032
AS3032 £18.95
MMTX- MICRO-MINIATURE GVTRANSMITER The bug for its size, performance and price. Just $15 \times 25 \mathrm{~mm} .500 \mathrm{~m}$ bug for its size, performance and price. Just $15 \times 25 \mathrm{~mm} .500 \mathrm{~m}$
range © 9 VV . Good stability. $6-18 \mathrm{~V}$ operation. $3051 \mathrm{KT} £ 8.95$ AS3051 £14.95

- VTX - VOICE ACTIVATED TRANSmITTER Operates only when sounds detected. Low standby current. Variable trigger sensitivity. 500 m range. Peaking circuit supplied for maximum RF output. On/off switch. 6 V operation ARD-WIRED

RED BUG/TWO STATION INTERCOM Each station hard-wired bug or two-station intercom. $10 \mathrm{~m} \times 2$-core cable supplied. 9V operation. 3021KT $£ 15.95$ (kit form only) - TRVS - TAPE RECORDER VOX SWITCH Used to automatically operate a tape recorder (not supplied) via its REMOTE sock t when sounds are detected. All conversations recorded. Adjustable sensitivity \& turn-off delay. $115 \times 19 \mathrm{~mm}$. $3013 \mathrm{KT} £ 9$. AS3013 £21.9

700W power. PC
 6074KT £17.95

- 3 INPUT MONO MIXER Independent level conrol for each input and separate bass/treble controls. Input sensitivity: 240 mV . 18 V DC. PCB: 60 mm
185 mm 1052KT $£ 16.95$ - negativelpositive ion generator - NEGATIVEIPOSITIVE ION GENERATOR voltage experience required. $\mathbf{3 0 5 7 K T}$ £10.95
- LED DICE Classic intro to electronics \& circ analysis. 7 LED's simulate dice roll, slow down \& land analysis. 7 LED's simulate dice roll, slow down 9 . 9.95 STAIRWAY TO HEAVEN Tests hand-eye co-ordination. Press switch when green segment of LED lights to climb the stairway - miss \& start again! Good intro to several basic circuits. $\mathbf{3 0 0 5 K T} £ 9.95$ - ROULETTE LED 'Ball' spins round the wheel, slows down \& drops into a slot. 10 LED's. Good intro 10 СМО
- 12V XENON TUBE FLASHER TRANSFORMER steps up a 12 V supply to flash a 25 mm Xenon tube. Adjustable flash rate. 3163KT $£ 13.95$
- LED FLASHER 15 ultra bright red LED's flash in 7 selectable patterns. 3037MKT £5.95
- LED FLASHER 2 Similar to above but flash in sequence or randomly. Ideal 3052MKT £5.95
- INTRODUCTION TO PIC PROGRAMMING Learn programming from scratch. Programming hardware, Plorial series are provid, 3001 KT hands-on tutorial series are provided. $\mathbf{3 0 8 1 K}$
- SERI

SERIAL PIC PROGRAMMER for all $8 / 18 / 28 / 40$ pin DIP serial programmed PICs. Shareware software supplied limied to programming 256 bytes - ATMEL 89Cx051 PROGRAMMER Si
se 89C1051, 89C2051 \& 89C4051 uC's. Programmer does NOT require special software other than a terminal emulator program (built into Windows). Can be used with ANY computer/operating sysem. 3121 KT £24.95

- 3V/1.5V TO 9V BATTERY CONVERTER Replace expensive 9 V batteries with economic 1.5 V batteres. IC based circuit steps up 1 or $2^{\text {' } A A ' ~ b a t t e r i e s ~ t o ~}$ give 9V/18mA. 3035KT £5.95
- STABILISED POWER SUPPLY 3-30V/2.5A Ideal for hobbyist \& professional laboratory. Very
reliable \& versatile design at an extremely reasonreliable \& versatile design at an extremely reason-
able price. Short circuit protection. Variable DC able price. Short circuit protection. Variable DC
voltages (3-30V). Rated output 2.5 Amps. Large voltages (3-30V). Rated output 2.5 Amps. Lar/3 ransformer. PCB $55 \times 112 \mathrm{~mm}$. Mains operation 1007 KT £16.95.

TELEPHONE SURVEILLANCE

MITX - MINIATURE TELEPHONE TRANSMITIER Attaches Tune-in your radio and hear both parties. 300 m range. Uses lin
14.95 TRI-TELEPHONE RECORDING INTERFACE Automaticaly record all conversations. Connects between phone line \& tape ther (not supplied). Operates Tecorders $1.5-12 \mathrm{~V}$ batter TPA - TELEPHONE PICK-UP AMPLIFIER/WIRELESS - TPA - TELEPHONE PICK-UP AMPLIRER BUG Place pick-up coil on the phone line or near phone earpiece and hear both sides of the conversation. $3055 \mathrm{KT} £ 11.95$ HIGH POWER TRANSMITTERS

rrisp, clear signal. Two-stage circuit. Kit includes microphone and

1009KT £12.95

4 WATT FM TRANSMITTER Comprises three RF stages and an audio preamplifier stage. Piezoelectrii microphone supplied or you can use a separate preampli-
fier circuit. Antenna can be an open dipole or Ground Plane. Ideal project for those who wish to get started in the fascinating world of FM broadcasting to and want a good basic circuit to experiment with. 12-18 - 15 WATT FM TRANSMITTER (PRE-ASSEMBLED \& ESTED) Four transistor based stages with Philips BL 88 in final stage. 15 Watts RF power on the air. 88 -
08 MHz . Accepts open dipole, Ground Plane, $5 / 8, \mathrm{~J}$, or VAGI antennas. 12-18VDC. PCB 70x22
needed for alignment. 1021KT £99.95

- SIMILAR TO ABOVE BUT 25W Output. 1031KT £109.95
- STABILISED POWER SUPPLY 2-30V/5A As kit

1007 above but rated at 5 Amp.
$24 \mathrm{VAC} / 5 \mathrm{~A}$ transformer. $\mathbf{1 0 9 6 K T} £ 27.95$.
24VAC/5A transformer. $1096 \mathrm{KT} £ 27.95$.

- MOTORBIKE ALARM Uses a reliable vibration
- MOTORBIKE ALARM Uses a reliable vibration
sensor (adjustable sensitivity) to detect movement
sensor (adjustable sensitivity) to detect movement
of the bike to trigger the alarm \& switch the output of the bike to trigger the alarm \& switch the outpu
relay to which a siren, bikes horn, indicators or relay to which a siren, bikes horn, indicators or
other warning device can be attached. Auto-reset. $6-12 \mathrm{VDC}$. PCB $57 \times 64 \mathrm{~mm}$. 1011 KT £11.95 Box 2011BX £7.00
- CAR ALARM SYSTEM Protect your car fro theft. Features vibration sensor, courtesy/boot light voltage drop sensor and bonnet/boot earth switch sensor. Entry/exit delays, auto-reset and adjustable alarm duration. 6-12V DC. PCB: 4
1019 KT £11.95 Box 2019BX £8.00
- its in SCREAMER 110dB of ear piercing noise their own with $2 \times 35 \mathrm{~mm}$ piezo elements built into just for fun! 6-9VDC. 3015KT £10.95
- COMBINATION LOCK Versatile electronic lock
comprising main circuit \& separate keypad for remote opening of lock. Relay supplied. 3029K £10.95
- ULTRASONIC MOVEMENT DETECTOR Crystal locked detector frequency for stability \& reliability. PCB $75 \times 40 \mathrm{~mm}$ houses all components. $4-7 \mathrm{~m}$ range. Adjustable sensitivity. Output will
relay/circuits. $9 \mathrm{VDC} .3049 \mathrm{KT} £ 13.95$
- PIR DETECTOR MODULE 3
- PIR DETECTOR MODULE 3 -lead assembled unit just $25 \times 35 \mathrm{~mm}$ as used in
- INFRARED SECURITY BEAM When in

IR beam is broken a reay is tripped that can be IR beam is broken a relay is tripped that can be used
to sound a bell or alarm. 25 metre range. Mains rated relays provided. 12VDC operation. 3130KT £12.95

- SQUARE WAVE OSCILLATOR Generates square waves at 6 preset frequencies in factors of 10 ox provided. 3111 KT f 8
- PC DRIVEN POCKET SAMPLER/DATA LOGGER Analogue voltage sampler records voltages up to 2 V or 20 V over periods from milli-seconds to months. Can also be used as a simple digital
scope to examine audio \& other signals up to about 5 KHz Stine audio \& other signals up to 3112KT £18.95
- 20 MHz FUNCTION GENERATOR Square, tri angular and sine waveform up to 20 MHz over 3
ranges using 'coarse' and 'fine' frequency adjustment controls. Adjustable output from $0-2 \mathrm{~V} \mathrm{p}-\mathrm{p}$. frequency meter. Uses MAX038 IC. Plastic to a
frese with printed front/rear panels \& all components provided. 7 -12VAC. 3101 KT £69.95

BARGAIN

 Circuits can be built and unassembled repeatedly. Comprehensive 68 -page manual with explanations, schematics and assembly diagrams. Suitable forschools. Recuires $2 \times A A$ batteries

> schools. Requires $2 \times$ AA batteries. Order Code EPLO30 ONLY $£ 14.95$ (

Order Code EPLO30 ONLY £14.95 (phon
130,300 and 500 -in-ONE also available.

[^0]\[

$$
\begin{aligned}
& \text { WHETHER ELEGTRONGS IS YOUR HOBBY } \\
& \text { OR YOUR LNELHOOD . . } \\
& \text { yOU NEED THE MODERN EMEGTRONGS MANUAL } \\
& \text { and the ELECTRONGO SERMOE MANUAL }
\end{aligned}
$$
\]

THE MODERN ELECTRONICS MANUAL (CD-ROM VERSION ONLY)

The essential reference

 work for everyone studying electronics- Over 800 pages
- In-depth theory
- Projects to build
- Detailed assembly instructions
- Full components checklists
- Extensive data tables
- Manufacturers' web links
- Easy-to-use Adobe Acrobat format
- Clear and simple layout
- Comprehensive subject range
- Professionally written
- Regular Supplements

EVERYTHING YOU NEED TO GET STARTED AND GO FURTHER IN ELECTRONICS!

The revised CD-ROM edition of the Modern Electronics Base Manual (MEM) contains practical, easy-to-follow information on the following subjects:

BASIC PRINCIPLES: Electronic Components and their Characteristics (16 sections from Resistors and Potentiometers to Crystals, Crystal Modules and Resonators); Circuits Using Passive Components (10 sections); Power Supplies; The Amateur Electronics Workshop; The Uses of Semiconductors; Digital Electronics (6 sections); Operational Amplifiers; Introduction to Physics, including practical experiments; Semiconductors (5 sections) and Digital Instruments (3 sections).

CIRCUITS TO BUILD: There's nothing to beat the satisfaction of creating your own projects. From basic principles, like soldering and making printed circuit boards, to the tools needed for circuit-building, the Modern Electronics Manual and its Supplements describe clearly, with appropriate diagrams, how to assemble a radio, loudspeaker circuits, amplifiers, car projects,
a computer interface, measuring instruments, workshop equipment, security systems, medical and musical circuits, etc. The Base Manual describes 12 projects including a Theremin and a Simple TENS Unit.

ESSENTIAL DATA: Extensive tables on diodes, transistors, thyristors and triacs, digital and linear i.c.s.

EXTENSIVE GLOSSARY: Should you come across a technical word, phrase or abbreviation you're not familiar with, simply look up the glossary included in the Manual and you'll find a comprehensive definition in plain English.

The Manual also covers Safety and provides web links to component and equipment Manufacturers and Suppliers. The most comprehensive reference work ever produced at a price you can afford, the CD-ROM edition of THE MODERN ELECTRONICS MANUAL provides you with all the essential information you need.

THE MODERN ELECTRONICS MANUAL (mem - cd-rom version only)

Revised CD-ROM Edition of Basic Work: Contains over 800 pages of information in Adobe Acrobat format. Edited by John Becker.
Regular Supplements: Additional CD-ROMs each containing approximately 500 pages of additional information on specific areas of electronics will be available for $£ 19.95$ each. Information on the availability and content of each Supplement CD-ROM will be sent to you as they become available.
Presentation: CD-ROM suitable for any modern PC. Requires Adobe Acrobat Reader which is included on the MEM CD-ROM.
Price of the Basic Work: £29.95 POST FREE.

ORDER BOTH MANUALS TOGETHER AND SAVE £10
 A mass of well-organised and clearly explained Information is brought to you by expert editorlal teams whose combined experience ensures the wildest coverage Regular Supplements to these unique publications, keep you abreast of the latest technology and technlques if required

ELECTRONICS SERVICE MANUAL

EVERYTHING YOU NEED TO KNOW TO GET STARTED IN REPAIRING AND SERVICING ELECTRONIC EQUIPMENT

SAFETY: Be knowledgeable about Safety Regulations, Electrical Safety and First Aid. UNDERPINNING KNOWLEDGE: Specific sections enable you to Understand Electrical and Electronic Principles, Active and Passive Components, Circuit Diagrams, Circuit Measurements, Radio, Computers, Valves and Manufacturers' Data, etc.

PRACTICAL SKILLS: Learn how to identify Electronic Components, Avoid Static Hazards, Carry Out Soldering and Wiring, Remove and Replace Components.
TEST EQUIPMENT: How to Choose and Use Test Equipment, Assemble a Toolkit, Set Up a Workshop, and Get the Most from Your Multimeter and Oscilloscope, etc
SERVICING TECHNIQUES: The regular Supplements include vital guidelines on how to Service Audio Amplifiers, Radio Receivers, TV Receivers, Cassette Recorders, Video Recorders, Personal Computers, etc

TECHNICAL NOTES: Commencing with the IBM PC, this section and the regular Supplements deal with a very wide range of specific types of equipment - radios, TVs, cassette recorders, amplifiers, video recorders etc.

REFERENCE DATA: Detailing vital parameters for Diodes, Small-Signal Transistors, Power Transistors, Thyristors, Triacs and Field Effect Transistors. Supplements include Operational Amplifiers, Logic Circuits, Optoelectronic Devices, etc.

ELECTRONICS SERVICE MANUAL

(ESM - Printed version only)

Basic Work: Contains around 900 pages of information. Edited by Mike Tooley BA Regular Supplements: Unlike a book or encyclopedia, this Manual is a living work continuously extended with new material. If requested, Supplements are sent to you on approval approximately every three months. Each Supplement contains around 160 pages - all for only $£ 23.50+£ 2.50$ p\&p. You can, of course, return any Supplement (within ten days) which you feel is superfluous to your needs. You can also purchase a range of past Supplements to extend your Base Manual on subjects of particular interest to you. Presentation: Durable looseleaf system in large A4 format
Price of the Basic Work: $£ 29.95$
(to include a recent Supplement FREE),

The essential work for servicing and repairing electronic equipment

- Around 900 pages
- Fundamental principles
- Troubleshooting techniques
- Servicing techniques
- Choosing and using test equipment
- Reference data
- Easy-to-use format
- Clear and simple layout
- Vital safety precautions
- Professionally written
- Regular Supplements
- Sturdy gold blocked ring-binder

Our 30 day money back guarantee gives you complete peace of mind. If you are not entirely happy with the Electronics Service Manual, for whatever reason, simply return it to us in good condition within 30 days and we will make a full refund of your payment - no small print and no questions asked. All we ask is that you pay the return postage. (Overseas buyers also have to pay our overseas postage charge). Sorry, but we can only make exchanges on the Modern Electronics Manual (CD-ROM version) if the CD-ROM is faulty, we cannot offer a money back guarantee on this product as the content can be printed out.

Wimborne Publishing Ltd., Dept Y12, 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202874562. Online shop: www.epemag.wimborne.co.uk/shopdoor.htm
THE MODERN ELECTRONICS MANUAL (CD-ROM version only)

MAIL ORDER ONLY • CALLERS BY APPOINTMENT

- Efficient quartz controlled microcontroller pulse generation
- Full kit with headphones \& all
hardware
KIT 847
.£63.95

PORTABLE ULTRASONIC
PEsT SCARER
A powerful 23 kHz ultrasound generator in a compact hand-held case. MOSFET output drives a special sealed transducer with intense pulses via a special tuned transformer. Sweeping frequency output is designed to give maximum frequency output is designed to give
KIT 842
.$£ 22.56$
68000
DEVELOPMENT
TRAINING KIT

- NEW PCB DESIGN
- 8MHz 68000 16-BIT BUS
- MANUAL AND SOFTWARE
- 2 SERIAL PORTS
- PIT AND I/O PORT OPTIONS
- 12C PORT OPTIONS

Stepping Motors MD38...Mini 48 step...£8.65 MD35...Std 48 step...£9.99 MD200... 200 step... $£ 12.99$ MD24...Large 200 step...£22.95

PIC PIPE DESCALER

- SIMPLE TO BUILD - SWEP
- HIGH POWER OUTPUT FREQUENCY
- AUDIO \& VISUAL MONITORING An affordable circuit which sweeps the incoming water supply with variable frequency electromagnetic signals. May reduce scale formation, dissolve existing scale and improve lathering ability by altering the way salts in the water behave Kit includes case, P.C.B., coupling coil and all components. High coil current ensures maximum effect. L.E.D. monitor.

KIT 868
£22.95
POWER UNIT.
...£3.99

MICRO PEsT SCARER

Our latest design - The ultimate scarer for the garden. Uses special microchip to give random delay and pulse time. Easy to build reliable circuit. Keeps pets/ pests away from newly sown areas play areas, etc. uses power source play areas, etc. us
from 9 to 24 volts.

- RANDOM PULSES
- HIGH POWER
- DUAL OPTION

KIT 867. \qquad
KIT + SLAVE UNIT.

Plug-in power supply £4.99 .£19.99

WINDICATOR
A novel wind speed indicator with LED readout. Kit comes complete with sensor cups, and weatherproof sensing head. Mains power unit $£ 5.99$ extra.

KIT 856.

. 228.00

* TENS UNIT

DUAL OUTPUT TENS UNIT

As featured in March '97 issue.
Magenta have prepared a FULL KIT for this excellent new project. All components, PCB, hardware and electrodes are included. Designed for simple assembly and testing and providing high level dual output drive.
KIT 866. . Full kit including four electrodes $£ 32.90$

1000V \& 500V INSULATION

 TESTERSuperb new design. Regulated output, efficient circuit. Dual-scale meter, compact case. Reads up to 200 Megohms.
Kit includes wound coil, cut-out case, meter scale, PCB \& ALL components.
KIT 848. £32.95

EPE TEACH-IN 2000

Full set of top quality NEW components for this educational series. All parts as specified by EPE. Kit includes breadboard, wire, croc clips, pins and all components for experiments, as listed in introduction to Part 1.
*Batteries and tools not included.
TEACH-IN 2000 -

KIT $879 £ 44.95$
 MULTIMETER £14.45

SPACEWRITER

An innovative and exciting project. Wave the wand through the air and your message appears. Programmable
to hold any message up to 16 digits long Comes pre-loaded with "MERRY XMAS". K includes PCB, all components \& tube plus instructions for message loading.
KIT 849 \qquad $£ 16.99$

12V EPROM ERASER

A safe low cost eraser for up to 4 EPROMS at a time in less than 20 minutes. Operates from a 12 V supply $(400 \mathrm{~mA})$. Used extensively for mobile work - updating equipment in the field etc. Also in educational situations where mains supplies are not allowed. Safety interlock prevents contact with UV.
KIT 790 \qquad .£29.90
SUPER BAT DETECTOR

1 WATT O/P, BUILT IN SPEAKER, COMPACT CASE $20 \mathrm{kHz}-140 \mathrm{kHz}$
NEW DESIGN WITH 40kHz MIC.
A new circuit using a
full-bridge' audio amplifier i.c., internal speaker, and
headphone/tape socket. The latest sensitive transducer, and 'double balanced mixer' give a stable, high performance superheterodyne design.
KIT 861
. 24.99
ALSO AVALLABLE Built \& Tested... $£ 39.99$

MOSFET MkII VARIABLE BENCH POWER SUPPLY 0-25V

Based on our Mk1 design and preserving all the features, but now with switching preregulator for much higher efficiency. Panel meters indicate Volts and Amps. Fully variable down to zero. Toroidal mains transformer. Kit includes punched and printed case and all parts. As featured in April 1994 EPE. An essential piece of equipment.

Kit No. 845

EPE
PROJECT PICS

Programmed PICs for all* ${ }^{*}$ EPE Projects 16C84/18F84/16C71 All $£ 5.90$ each PIC16F877 now in stock £10 inc. VAT \& postage (*some projects are copyright)

ULTRASONIC PEsT SCARER

Keep pets/pests away from newly sown areas, fruit, vegetable and flower beds, children's play areas, patios etc. This project produces intense pulses of ultrasound which deter visiting animals.

- KIT INCLUDES ALL

COMPONENTS, PCB \& CASE

- EFFICIENT 100 V

COMPDETEVY OUTPIBIE
COMPLETELY INAUDIBLE • LOW CURRENT TO HUMANS
KIT 812.

UP TO 4 METRES
RANGE
DRAIN

SIMPLE PIC PROGRAMMER	
INCREDIBLE LOW PRICE! Kit 857 £12.99	
-4 DISPLT	
RUCTIONS AND 16-CHARAC-2-LINE LCD DISPLAY	
 16 -character display, data, all components, and software to include in your own progra Ideal development base for meters, terminals, calculators, counters, timers - Just waiting	
CONTROLLER \& LIGHT CHASER	
L	

As featured in Aug./Sept. '99 EPE. Full kit with Magenta redesigned PCB - LCD fits directly on board. Use as Data Logger or as a test bed for many other 16F877 projects. Kit includes programmed chip, 8 EEPROMs, PCB, case and all components.

$$
\text { KIT } 877 £ 49.95 \text { inc. } 8 \times 256 \mathrm{~K} \text { EEPROMS }
$$

KIT 900 . . . £34.99
POWER SUPPLY £3.99 STEPPING MOTOR £5.99

EPE PIC TOOLKIT 3

- THE LATEST TOOLKIT BOARD - 8, 18, 28 AND 40-PIN CHIPS
- MAGENTA DESIGNED P.C.B. WITH COMPONENT LAYOUT AND EXTRAS
- L.C.D., BREADBOARD AND PIC CHIP INCLUDED
- ALL TOP QUALITY COMPONENTS AND SOFTWARE SUPPLIED

KIT 880 . . . £34.99 with 16F84 . . . £39.99 with 16F877

PIC TOOLKIT V2

- SUPER UPGRADE FROM V1 • 18, 28 AND 40-PIN CHIPS
- READ, WRITE, ASSEMBLE \& DISASSEMBLE PICS
- SIMPLE POWER SUPPLY OPTIONS 5V-20V
- ALL SWITCHING UNDER SOFTWARE CONTROL
- MAGENTA DESIGNED PCB HAS TERMINAL PINS AND

OSCILLATOR CONNECTIONS FOR ALL CHIPS

- INCLUDES SOFTWARE AND PIC CHIP

KIT 878 . . . £22.99 with 16F84 . . . £29.99 with 16F877

EPE PIC Tutorial

At last! A Real, Practical, Hands-On Series

- Learn Programming from scratch using PIC16F84
- Start by lighting I.e.d.s and do 30 tutorials to Sound Generation, Data Display, and a Security System.
- PIC TUTOR Board with Switches, I.e.d.s, and on board programmer

PIC TUTOR BOARD KIT

Includes: PIC16F84 Chip, TOP Quality PCB printed with Component Layout and all components* (*not ZIF Socket or Displays). Included with the Magenta Kit is a disk with Test and Demonstration routines.
KIT 870 £27.95, Built \& Tested £42.95
Optional: Power Supply - £3.99, ZIF Socket - £9.99 LCD Display £7.99 LED Display \qquad $£ 6.99$ Reprints Mar/Apr/May 98 - £3.00 set 3

SUPER PIC PROGRAMMER

- READS, PROGRAMS, AND VERIFIES
- WINDOWS ${ }^{\boxed{\pi}}$ SOFTWARE
- PIC16C6X, 7X, AND 8X
- USES ANY PC PARALLEL PORT
- USES STANDARD MICROCHIP • HEX FILES
- OPTIONAL DISASSEMBLER SOFTWARE (EXTRA)
- PCB, LEAD, ALL COMPONENTS, TURNED-PIN SOCKETS FOR 18, 28, AND 40 PIN ICs
- SEND FOR DETAILED INFORMATION - A SUPERB PRODUCT AT AN UNBEATABLE LOW PRICE.

Kit 862
£29.99
Power Supply £3.99
DISASSEMBLER SOFTWARE
£11.75

PIC STEPPING MOTOR DRIVER

INCLUDES PCB
PIC16F84 WITH
DEMO PROGRAM,
SOFTWARE DISC, INSTRUCTIONS AND MOTOR.

Kit $863 £ 18.99$

FULL SOURCE CODE SUPPLIED ALSO USE FOR DRIVING OTHER POWER DEVICES e.g. SOLENOIDS

Another NEW Magenta PIC project. Drives any 4-phase unipolar motor - up to 24 V and 1 A . Kit includes all components and 48 step motor. Chip is pre-programmed with demo software, then write your own, and re-program the same chip! Circuit accepts inputs from switches etc and drives motor in response. Also runs standard demo sequence from memory.

All prices include VAT. Add $£ 3.00$ p\&p. Next day $£ 6.99$

THE MOO MAGAZINE FOR ElECTRONIC TECHNOLOGY COMPUTER POETS

VOL. 31 No. 12 DECEMBER 2002

Editorial Offices:
EVERYYDAY PRACTICAL ELECTRONICS EDITORIAL
WIMBORNE PUBLISHING LTD., 408 WIMBORNE ROAD EAST FERNDOWN, DORSET BH22 9ND
Phone: (01202) 873872 . Fax: (01202) 874562.
Email: enquiries@epemag.wimborne.co.uk Web Site:
www.epemag.wimborne.co.uk
EPE Online (downloadable version of EPE): www.epemag.com EPE Online Shop: www.epemag.wimborne.co.uk/shopdoor.htm See notes on Readers' Technical Enquiries below - we regret lengthy technical enquiries cannot be answered over the delephone.
Advertisement Offices:
EVERYDAY PRACTICAL ELECTRONICS ADVERTISEMENTS MILL LODGE, MILL LANE

REWRITING HISTORY

Just about all modern electronics is based on the transistor in one form or another and ever since 1947 most people have believed that this little marvel of semiconductor technology was invented at Bell Labs by Bardeen, Brattain and Shockley - we no longer believe this! Looking back into the archives our contributor Andy Emmerson has unearthed some fascinating facts - he has also found an interesting red herring along the way.

It is not so much rewriting history as simply bringing the truth to everyone's notice. It just shows how we tend to believe what we are told. We now believe the transistor actually first saw the light of day around 1910, although the name was not coined until it was "re-invented" at Bell Labs some 37 years later. There was also a patent on the field effect transistor in 1933. See next month's issue for the full story - even Roswell gets a mention!

While on the subject the Alternative Uses For Transistors feature in this issue makes fascinating reading. As they say, there are more ways than one to skin a cat! The very simple nature of a basic transistor allows it to be connected in a number of ways the device designers (and, no doubt, the "inventors") never intended, or even envisioned. This unusual feature will no doubt encourage plenty of experimentation.

WRITING HISTORY

Not only has Andy dug up the story mentioned above, he has also come up with a whole range of fascinating topics on today's technology. Topics like Hotspots - a new era for community internet access; Ultra Thin Batteries - applications in contactless smart cards; No Hiding Place - new recognition surveillance techniques; Broadband by Powerline - will it be resurrected?; Viruses on Mobiles - not a myth; VoIP - Voice over Internet Protocol; Internet at Risk - 96 per cent of UK traffic through one exchange!; Drive-By Hacking - security on wireless local area networks; Tempestuous Times - modern eavesdropping James Bond style. The list goes on and next month Andy brings you the lowdown in the first of a new regular Techno Talk page.

AVAILABILITY

Copies of EPE are available on subscription anywhere in the world (see opposite), from all UK newsagents (distributed by COMAG) and from the following electronic component retailers: Omni Electronics and Yebo Electronics (S. Africa). EPE can also be purchased from retail magazine outlets around the world An Internet on-line version can be purchased and downloaded for just \$9.99US (approx £7) per year available from www.epemag.com

SUBSCRIPTIONS

Subscriptions for delivery direct to any address in the UK: 6 months $£ 15.50$, 12 months $£ 29.50$, two years $£ 54$; Overseas: 6 months $£ 18.50$ standard air service or $£ 27.50$ express airmail, 12 months $£ 35.50$ standard air service or $£ 53$ express airmail, 24 months $£ 66$ standard air service or $£ 101$ express airmail.
Online subscriptions, for downloading the magazine via the Internet, \$9.99US (approx £7) for one year available from www.epemag.com.
Cheques or bank drafts (in $£$ sterling only) payable to Everyday Practical Electronics and sent to EPE Subs. Dept., Wimborne Publishing Ltd. 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202 874562. Email: subs@epemag.wimborne.co.uk. Also via the Web at: http://www.epemag.wimborne.co.uk. Subscriptions start with the next available issue. We accept MasterCard, Amex, Diners Club, Switch or Visa. (For past issues see the Back Issues page.)

BINDERS

Binders to hold one volume (12 issues) are available from the above address. These are finished in blue p.v.c., printed with the magazine logo in gold on the spine. Price $£ 6.95$ plus $£ 3.50$ p\&p (for overseas readers the postage is $£ 6.00$ to everywhere except Australia and Papua New Guinea which cost £10.50). Normally sent within seven days but please allow 28 days for delivery - more for overseas.
Payment in £ sterling only please. Visa, Amex, Diners Club, Switch and MasterCard accepted. Send, fax or phone your card number and card expiry date with your name, address etc. Or order on our secure server via our UK web site. Overseas customers - your credit card will be charged by the card provider in your local currency at the existing exchange rate.

Editor: MIKE KENWARD
Deputy Editor: DAVID BARRINGTON
Technical Editor: JOHN BECKER
Business Manager: DAVID J. LEAVER
Subscriptions: MARILYN GOLDBERG
Administration: FAY KENWARD
Editorial/Admin: (01202) 873872
Advertisement Manager:
PETER J. MEW, Frinton (01255) 861161
Advertisement Copy Controller:
PETER SHERIDAN, (01202) 873872
On-Line Editor: ALAN WINSTANLEY
EPE Online (Internet version) Editors: CLIVE (MAX) MAXFIELD and ALVIN BROWN
READERS' TECHNICAL ENQUIRIES
E-mail: techdept @epemag.wimborne.co.uk
We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a selfaddressed envelope and international reply coupons.

PROJECTS AND CIRCUITS
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it.
A number of projects and circuits published in EPE employ voltages than can be lethal. You should not build, test, modify or renovate any item of mains powered equipment unless you fully understand the safety aspects involved and you use an RCD adaptor.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers (see Shoptalk). We advise readers to check that all parts are still available before commencing any project in a back-dated issue.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY PRACTICAL ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fides, the manazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or in inserts.
The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture.

TRANSMITTERS/BUGS/TELEPHONE EQUIPMENT

We advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the UK. Readers should check the law before buying any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use or ownership. The laws vary from country to country; readers should check local laws.

Constructional Project

VERSATILE PIC FLASHER

STEVE CHALLINOR

Enhance your Christmas decorations or your child's ceiling with this versatile PIC-controlled flasher display

BEHIND this design was an idea to make an interesting ceiling display for a child's bedroom. One of the author's colleagues had seen a display of blue lights in a shopping centre and wanted to know if the author could duplicate this.
The lights needed to be slowly increasing and decreasing in brightness and behaving in a random fashion. Thereby was perceived a means by which the author could lull his own insomniac toddler to sleep, and so set to work immediately!

TAKE YOUR PIC

Basing the system on a PIC microcontroller, it was found that the results were so pleasing that it was thought to be of interest to EPE readers - but absolutely no guarantee about the sleep remedy!
The original idea has been expanded to create a number of different effects, so that apart from the slow and soothing bedroom display, quite a number of other display options are possible. Preprogrammed PICs are available as stated later for the benefit of readers who do not have PIC programming facilities.

There are five dual-in-line (d.i.1.) switches which select a total of thirtytwo possibilities. There are eight outputs, but the light emitting diodes (1.e.d.s) may be chained together to multiply this number. There is too much going on to notice if two or more 1.e.d.s are doing the same thing!

APPLICATIONS

Apart from the ceiling display, one variant is a wall display, with a luminous moon crescent mounted on a circle of black card and eight blue 1.e.d.s scattered over the rest of the circle. Another is a star, again for wall mounting, with 21 1.e.d.s of different colours. Again this is a wall display but it would make an excellent star for the Christmas tree, or why not a miniature tree for the interior of the car? There must be many imaginative applications.

Although an l.e.d. display was in mind from the outset, the open collector outputs can sink up to 500 mA , thus it would also be possible to drive filament bulbs. This could drive the Christmas tree lights in a new way (after substituting a normal bulb for the flasher bulb). This only applies to low voltage types, though, with a +24 V supply and multiple strings of low voltage bulbs. However, this article only discusses the l.e.d. version.

Fig.1. Flow chart for the PIC Flasher.

Looking at his own tree lights in this way, which are +24 V and have eight strings of ten 2.4 V bulbs, the author wondered is this could be matched using the PIC. However, the problem was the way in which the strings were interlaced, which seemed like a headache to sort out!

The star display is found to be most effective where all the l.e.d.s can be seen together. The ever-changing outputs create a fascinating display.

L/GHTING CONCEPT

Ideally, the light output should be analogue, with the l.e.d.s varying from fully on to fully off. However, the author refused to entertain the idea of eight digital-to-analogue converters with associated drivers. Instead the circuit uses Pulse Width Modulation (PWM), with the mark/space ratio controlling the brightness of the l.e.d.s - space fully off, mark fully on.
The mark is obtained from an array in programmed PIC memory, which may be termed the brightness profile. Thus one complete cycle, from off to maximum and back to off again is obtained as the program reads in values from the whole array. However, each output has a slightly different array length, giving a continual shift in phase between the outputs and hence an apparently random effect.

Each value of mark/space is repeated a number of times to give control over the speed of flashing. Referring to the flow chart in Fig.1, the core operation is the central loop where the mark is decremented to see whether to output a high or a low. The output is set high as long as the mark is non-zero, then low for the rest of the period (the space).

This is repeated up to eight times according to speed and then for every other mark in the array (about two hundred of these) at the same time as jumping about between all eight outputs. This keeps the PIC busy enough not to require delay routines, with the oscillator running at top speed, 20 MHz .

CIRCUIT DIAGRAM

Referring to the circuit diagram in Fig.2, switches S1a and S1b set the speed. Switches S1c and S1d control the depth of modulation, meaning how
far from fully on the 1.e.d. goes towards off, i.e. selecting just a central portion of the brightness array. This gives a pulsating effect rather than an on/off flash.
Switch S1e selects between two brightness profiles. One is smooth, but the other has a high speed flash built into the profile. The speed is related to the controls set by the other switches, and at higher speeds gives an "icy shimmer" to the display. Table 1 summarises the settings for the switches.
The PIC16F84A microcontroller is shown as IC1 and is run at 20 MHz , as set by crystal X1. Note that the "ordinary" PIC16F84 (without the "A" suffix) is not suitable for this design since it has not been manufactured to run at the 20 MHz rate required.
The switches S1a to S1e are biased normally high by five resistors. These are within a single resistor module, marked as RM1. The status of the switches is read by the PIC's Port A lines, RA0 to RA4.
The l.e.d.s are controlled by the PIC's RB0 to RB7 lines. They control the switching of transistors TR1 to TR8, via current limiting resistors R1 to R8. As said earlier, the transistors are used in open-collector mode to drive the l.e.d.s, with resistors R10 to R17 limiting the current flow.
The PIC16F84A's Port B is capable of sourcing a maximum of 100 mA or sinking 150 mA , so it would be feasible to directly control eight single l.e.d.s. However, the provision of the open collector transistors allows several l.e.d.s to be chained together for this larger display.
The number chained will depend on the voltage supply, with roughly 1.8 V per

1.e.d. required (double this for blue or white) with enough voltage left over to provide a sensible current limiting resistor.

COMPONENIS

Resistors

RM1
R1 to R8 R9 k-way commoned resistor module, s.i.l.

R10 to R17
see Table 2
TALK

Capacitors

C1, C2
10p ceramic (2 off)
100n ceramic (2 off)
C4 $\quad 100 \mu$ radial elect. 10 V

Semiconductors

D1 to D8 l.e.d., see text regarding quantities and styles
TR1 to TR8 BC337 npn transistor (8 off)
IC1 PIC16F84A microcontroller, preprogrammed (see text)
IC2 $78 \mathrm{~L} 05+5 \mathrm{~V}$ voltage regulator

Miscellaneous

S1	5-way d.i.l. switch, p.c.b.
	mounting
X1	20MHz crystal
TB1	2-way terminal block,
	p.c.b. mounting (5 off)
SK1	2.1mm d.c. power socket, \quad p.c.b. mounting

Printed circuit board, available from the EPE PCB Service, code 377; 18-pin d.i.l. socket; display construction material

Approx. Cost
Guidance Only
excl. l.e.d.s

Fig.2. Complete circuit diagram (except power supply - see text) for the Versatile PIC Flasher.

output intensities comparable with filament bulbs, and these will be suitable for the majority of applications.
In the prototype, diffused 5 mm 1.e.d.s having 400 mcd intensity were used. They provide a wide viewing angle which works

Table 2: L.E.D. current limiting resistor values for +12 V and +24 V power supplies

L.E.D.s per output (n)	Red/Yellow/Green	R10 Blue	20mA White	One Blue $+n(R / Y / G)$	One White $+n(R / Y / G)$
+12V Power Supply					
1	470Ω	390Ω	470Ω	270Ω	330Ω
2	390Ω	180Ω	270Ω	220Ω	220Ω
3	330Ω	-	-	120Ω	150Ω
4	220Ω	-	-	-	-
+24V Power Supply					
3	1K	560Ω	680Ω	680Ω	820Ω
4	820Ω	390Ω	560Ω	560Ω	680Ω
5	680Ω	220Ω	390Ω	470Ω	560Ω
6	560Ω	-	220Ω	390Ω	470Ω

very well for wall displays. Should you want to go for even larger displays, there is an abundance of different intensities and sizes available to choose from.

Voltage regulator IC2 provides the PIC with the +5 V required. The regulator may be fed with any d.c. voltage between about 7 V and 24 V or so. The 1.e.d.s are powered from the input voltage supply, not by the +5 V from the regulator.

CONSTRUCTION

The printed circuit board (p.c.b.) component and track layout details are shown in Fig.3. This board is available from the $E P E$ PCB Service, code 377.

Assemble the board in order of component size. Use a socket for the PIC16F84A, IC1. Do not insert the PIC until you have checked the correctness of the output voltage from regulator IC2.

The prototype p.c.b. was glued to the back of a Christmas Star and Moon cut from stout card. Holes were punched into the card and the l.e.d.s pushed through and secured using holt-melt glue.

Prototype wall mounted luminous "moon" with blue l.e.d. "stars" mounted on the black "sky".

The l.e.d. quantity and the order in which they are connected is entirely up to the user.

Remember, though, that each 1.e.d. has a voltage drop across it and so there is a limit to the number of l.e.d.s that can be connected in series in relation to the power supply voltage. There is also a limit to the number of 1.e.d.s that can be used in parallel without overloading their driving transistor, or the power supply.
Having wired up the l.e.d.s, there are then just two external wires required, to the chosen power supply.

There are no great requirements for the power supply. A plug mounted type should suffice, with a rating of 250 mA . There's no necessity for it to be regulated either, as the PIC is powered via the +5 V regulator.
Having completed the assembly, apply power (without the PIC inserted) and check that the output voltage from IC 2 is +5 V . Always disconnect the power supply before making changes to the construction.
With the programmed PIC inserted, check again that the +5 V output from IC2 is correct. If the flasher doesn't work straight off check that the 1.e.d.s are connected the right way round.

SETTING UP

Using the d.i.l. switches and referring to Table 1, the maximum display speed should be selected together with maximum modulation (the l.e.d.s should go from fully off to fully on) and with a smooth brightness profile. Then it's just a matter of finding the most suitable settings according to situation and taste. There are thirty-two possibilities.

SOFTWARE

The software is available for free download from the $E P E \mathrm{ftp}$ site. This is most easily accessed via the main page of the $E P E$ web site at www.epemag.wimborne.co.uk. At the top is a click-link saying FTP site

(downloads), click it then click on PUB and then on PICS, in which screen you will find the Versatile PIC Flasher folder.

The software can also be obtained on 3.5-inch disk (Disk 5) from the Editorial office. There is a nominal handling charge to cover admin costs. Details are given on the EPE PCB Service page, and in this month's Shoptalk, which also gives details about obtaining preprogrammed PICS.

Enjoy your display of PIC Noelogy!

80-173 12V DC motor, flat style, 3000 RPM, 18 NCM torque, draws 5 Amps , reversible, 24 toothed gear. Ideal for robot wars, etc. Dimensions 152 mm diameter $\times 80 \mathrm{~mm}$ including spindle and gear. Very good quality mounted on a fixing bracket. Some sort of speed counting circuitry on rear, Bargain at just $£ 19.95$

80-175 In-line RCD protected powerbreaker. Maximum load 10A © 250 V AC. Reset and test buttons. IEC plug for mains input with an IEC socket on a 1 m long lead. These usually sell for around $£ 36.00$. Our price $£ 5.00$
80-083 CR2025 lithium, 3 V coin cell. 20 mm diameter $\times 2.5 \mathrm{~mm}$ thick. Branded Sony. Pack of 25 for £7.50; Pack of 100 for $£ 25.00$. Our normal price individually is $£ 1.00$ each!!!
56-155 KBPC3501 bridge rectifier. $100 \mathrm{~V}, 35 \mathrm{Amp}$. $£ 2.50$ each

80-176 12V, 50Ah, gel type lead acid battery. Made by Dynasty High Rate Series, 200 WPC. Model No. UPS12$200.230 \times 140 \times 225 \mathrm{~mm}$. Brand new Please note that there is no extra carriage charge when purchasing this item. Only £25.00

80-132 Switch mode PSU. Nice little unit. Model No. BM43024. Input 120 V AC or 240 V AC . Output $+5 \mathrm{~V} @ 2.5 \mathrm{~A}$ and $+12 \mathrm{~V} @ 2 \mathrm{~A}, 36.5 \mathrm{~W}$. Semi-cased with mains IEC filter and switch. £3.95

$38-428$ USB lead, 2 m long, ' A ' plug to 'A' plug. £2.95 38-429 USB lead, 2 m long. ' A ' plug to 'B' plug. $£ 2.95$ $38-430$ USB lead, 2 m long. 'B' plug to 'B' plug. $£ 2.95$

80-135 Flat pack fan, 12 V DC. Made by Papst. Air flows around the blades and out the side to produce a strong air flow. Excellent for cooling down in crowded enclosures. $121 \times 121 \times$ 37 mm . Ex-equipment but in full working order and excellent condition. These are normally over $£ 25.00$ new. Our price just $£ 5.50$

42-337 Plastic construction metric dial vernier. Reads $0-100 \mathrm{~mm}$. Outside, inside, depth and step measurements. Has a locking device and comes supplied in a neat case. $\mathbf{£ 7 . 9 5}$

48-140 PVC electrical tape, 19 mm wide $\times 0.15 \mathrm{~mm}$ thick $\times 33$ metres long. Flame retardant, BS3924. 75p

48-259 Ferrite rod with $1 \times$ tuning coil. 140 mm long $\times 10 \mathrm{~mm}$ diametar. $£ 1.75$

SEND FOR OUR FREE CATALOGUE CONTAINING EVEN MORE BARGAIN ITEMS!

80-046 Electronic digital caliper for both imperial ($0-6$ inches) and metric (0 $150 \mathrm{~mm})$. Accuracy $+1-0.001^{\prime \prime}$. Simple touch button facility to change from metric to imperial (and vice versa). On/off and zero button, inside and outside measuring plus locking screw to hold measurement. Uses a standard watch battery (included). Metal construction. Supplied in a neat plastic storage case. Special price of $£ 34.95$
$\mathbf{5 6 - 1 4 9}$ Fork and ring crimp connectors pack. Consists of $5 \times 5 \mathrm{~mm}$ blue fork, $5 \times$ 5 mm yellow fork, $5 \times 5 \mathrm{~mm}$ red fork, $5 \times$ 5 mm blue ring, $5 \times 5 \mathrm{~mm}$ yellow ring and $5 \times 5 \mathrm{~mm}$ red ring. Pack of $30 £ 1.00$

WCN Supplies
Dept EE . The Old Grain Store Rear Of 62 Rumbridge Street
Totton. Southampton - SO40 9DS Telephone or Fax On
Southampton 02380660700 Email: info@wcnsupplies.fsnet.co.uk
"Spin doctors" come up with a new type of transistor, reports lan Poole

THERE is an enormous variety of different transistors that are available these days. There are the obvious types such as bipolar and field effect transistors. However, there are other new technologies that are surfacing that are neither bipolar nor field effect transistors.
One new type that offers a considerable amount of promise is known as the spin transistor. It is expected to have widespread applications in areas from non-volatile memories to magnetic sensors. Developed at Oxford University under Dr John Gregg, its operation is based around a three terminal device that is sensitive to magnetic fields.

Basics

The new technology relies on the fact that electric currents flowing in ferromagnets are carried by electrons with two different types of spin. The first has a spin parallel to the magnetisation whilst the second has its spin in an anti-parallel direction.
It is found that the electrons with the different types of spin can be differentiated from one another because the carrier mobilities of the two types are very different. Whilst it is possible to flip the electrons so that they have the opposite spin, this takes place relatively slowly. This means that it is possible to control and monitor the electrons in ferro-magnetic materials to encode, store and read information.
The spin devices operate by transferring electrons with a particular type of spin from one area of the device to another where its state or spin is subsequently read. The spin of an electron can change as it travels, but it takes a given distance for this to occur.
This distance is dependent upon the material through which the electron is passing and may vary between a few nanometres to a few microns or micrometers. For devices to be able to operate satisfactorily, the dimensions within the devices must be of an order smaller than the distance required for the electron spin to change or flip.

Spin Transistors

The transistor grew out of the discovery in 1988 of a phenomenon known as Giant Magnetic Resistance (GMR). This enabled some spin transistors to be developed that could detect magnetic fields. These were three terminal devices in which the current flowing through one terminal could be controlled by the application of a magnetic field across the other two.

Whilst these devices represented a very useful step forward in technology, their usefulness was limited by the fact that gains were always less than unity. Now, the new research undertaken at Oxford has built on this technology and enabled it to be brought up to a stage where it can be used in real applications. As a result patents have been taken out and these are owned by Isis Innovation Ltd.

One of the main problems they faced was that when the ferromagnetic metals were deposited onto the semiconductor, silicides were formed at the junction. These tended to depolarise the electrons, resulting in random polarisation of the electrons rather than having them polarised as needed for the correct operation of the transistor. The problem was overcome by adding
a very thin layer of aluminium a very thin layer of aluminium
oxide, only about 1.5 nm thick, between the emitter and base. The electrons were able to tunnel through the aluminium without the depolarisation created by the silicides. This provided a significant improvement in the performance and also in the consistency between devices.
A further advantage of the layer is that it allows the tunnelling barrier to be varied. This alters the energy of the electrons entering the base region and allows the magnetic sensitivity to be varied. Plans are also in hand

The spin transistor has three layers, and these can be considered as analogous to a normal bipolar transistor. There is a paramagnetic layer, called the base that is sandwiched between two ferromagnetic layers, the collector and emitter. Within the transistor the ratio of the electrons with different spins in the base region is altered so that it is not $1: 1$.
The collector region is also constructed so that it prefers to absorb electrons with one spin rather than another. If the magnetisation of the emitter is fixed by an external pinning layer, then it is only the magnetisation of the collector that will be affected by external fields, that will in turn affect the current flow.

Results

Much development has been undertaken with the new technology. The first devices were all metal. Although this provided a useful research tool, the actual spin effects were masked by unwanted spurious effects and responses. Gain levels were well below unity and the output voltage variations were only measured in nanovolts.

By changing the structure to a more sophisticated semiconductor structure, significant improvements have been seen. However, the development of the new structure has not been easy and several stages of improvements were required to reach the current level of performance. But even now the researchers indicate that further development is required.
to investigate the performance advantages that might be created by introducing a second barrier between the base and the collector.

Applications

The new technology has a number of potential applications and no doubt as time progresses and the development continues, more will be found. The technology has a large potential and is expected to be used in many applications including high sensitivity magnetic field sensors for automotive, robotic and mechanical engineering applications.
Of these the automotive industry is expected to be the largest user as the requirement for electronic sensors is growing rapidly because of the need to automate and control more functions within cars. Much of this has arisen out of the need to improve engine management systems and reduce emissions, along with the need to develop more efficient braking systems.
For applications purely within the field of electronics they could be used in data storage applications. Here they have the advantage that they are non-volatile and do not require power to maintain their memory state.
The new spin transistor has many applications and in view of the large markets that are open for its use, their seems to be a real opportunity for it to make a significant impact.

Tune in to WorldSpace

Buried in several of the major electronics' suppliers catalogues you may find a scant mention of WorldSpace radio receivers, but the WorldSpace Corporation satellite system promises to be a major new area of consumer entertainment, and in some regions it could actually be a lifesaver. The world wide web proves to be the vital link in learning about the system's capabilities, and this month's Net Work looks at this emergent digital radio service and also reviews a typical receiver.

Broadcasting data, text and multimedia as well as radio transmissions via its three geostationary satellites (AfriStar, AsiaStar and AmeriStar), WorldSpace (www.worldspace.com) is poised over Europe and Africa, Asia and the Americas. As their web site shows, each satellite transmits three beams totalling some 80 to 120 different channels, including the 30 or 40 radio channels that can be heard on a special WorldSpace digital receiver.

There are a number of mono and stereo compatible tuners available, manufactured under licence by JVC, Sanyo, Hitachi, Panasonic and others, each one using the custom-made Starman chipsets to process and decode the CDquality digital radio transmissions. WorldSpace claim that for the first time, digital

Typical WorldSpace digital radio receiver with detachable antenna, from Sanyo broadcast technology is now being built into small, portable radio receivers.

All the receivers feature a removable miniature antenna connected via a screened cable, which must be properly aligned for azimuth and elevation to receive the broadcasts. The writer has been trialling the Sanyo receiver over the past few months. This portable unit has battery or mains operation, backlit 1.c.d., program memories, clock/timer and remote control, carrying strap and detachable dish.
Experience on location in northern England - well within the stated coverage of an AfriStar beam - showed that the indoor dish setup could be a little tricky, but when the dish was aligned, reception was of a remarkable crystal-clear broadcast quality with none of the hiss, fade or crackle that we associate with analogue radio reception. Some channels are broadcast in stereo and the monospeakered Sanyo has a headphone jack and line-out to fed into a hifi, as well as an optical output.

Reporting In

Readers can check coverage for their region by visiting www.worldspace.com/technology/coveragemaps/index.html where coverage of the three satellites is shown. A line-of-sight view of the satellite is preferable, and the Sanyo receiver worked fine when the small dish was placed indoors on a window ledge with a clear view of the southern skies. The bad news was that the receiver could not receive any programs at all when located in the office, as the walls and ceiling were in the way!

Stations that are available include World Radio News, Bloomberg and a wide variety of specialist music channels including England's BBC Radio 1, Radio Caroline, European pop and some Arab and African stations. You can even hear about political life in the Fiji Islands, seasonal power cuts in Sweden, music from Kenya or the latest from CNN, and a number of languages are
available. The AfriStar satellite covers Africa and Europe, a program guide is available at www.worldspace.com/products services/programguides/afristar_guide.html

Prime Time

The receivers provide for the decryption of pay-broadcast channels via a password input. A number of premium-rate subscriptionbased programs are being launched, so I asked Jane DiVito of WorldSpace UK what the costs implications are likely to be.

Radio Caroline, for example, which is presently undergoing test transmissions, will eventually be encrypted and it will cost listeners $£ 59.88$ (US\$92) per year paid in advance to receive them; there are some special offers available for early birds. The company is also excited about the forthcoming launch of NPR (National Public

Radio, www.npr.org) on satellite, which will be an encrypted service that will be of great interest to ex-patriots and US service personnel serving overseas.

The receivers hint at future expansion possibilities as they have a data port that it is claimed will transform a receiver into a PC-compatible multimedia receiver; no sign of any peripheral hardware yet though. The Sanyo has an optical output for e.g. a Minidisc receiver, and Hitachi receivers are proving popular because of their additional AM/FM wavebands.
Readers in the UK with any queries on availability and pricing can call the WorldSpace London office on 0207494 8200, or, of course, check their web site for more details and overseas contacts.

Eech satelitie has tiree beams, East, West and south Different programs are earried depending on the beam you receive, see the ercuaram guide for details of broadeasts in your

Screenshot of the WorldSpace web site satellite coverage.

Going, going . . .

Last month I suggested Email Filtering (www.emailfilter ing.co.uk), which is a paid-for service that intercepts spam from your mailbox, leaving you to fetch the remaining genuine emails from their own secure servers. The quality of service (as measured by the numbers of spam mails blocked) is rising steadily and EMF has now refined their service further with their enigmatically named "List R" filter.

The company remains very tight-lipped about this latest enhancement, but I can report that the success rate has leapt noticeably, now with a consistently very high rate of interception. Some spams sneak through however: notably those risible "African" emails based on the well-known fraud involving the alleged export of millions of dollars (and the attempted separation of you from your money).

See you next month for more Net Work.
You can email Alan at alan@epemag.demon.co.uk

LATER AND SLOWER 3G COMMS

> After all the fuss about the superlative merits of the next generation of cellphone technology, the latest news is greatly disappointing. Barry Fox reports.

1r's official. 3G will not just be later than expected, the data rates will be much slower than promised and the first 3G services will not even use the new high frequency bands which over a hundred companies round the world had beggared themselves to licence - they will use existing GSM and GPRS technology.
Nokia has ousted Motorola to become the world leader in cellphones and hoped to launch the first commercial 3G service with Finnish network Sonera at the end of September. Joint invites from Nokia and Sonera promised "their 3G launch on 26 September". But somewhere between the invitations going out and the big day, the launch turned into another test and trial like the 3 G experiment being run by BT on the Isle of Man, and Hutchison in the UK. Despite high profile publicity Hutchison has so far only given a thousand Motorola handsets to "friendly users" in the UK and Italy to see how they work.

Finishing Fudge

The failure to launch in Finland left both Nokia and Sonera fudging with GSM demonstrations and talking about the need to "distinguish between 3 G radio technology and 3G services".
Nokia had started hedging bets ahead of the event by promising a mobile phone movie service in Finland, using existing GSM networks. At the annual Emmy awards in Los Angeles, Nokia promoted picture transmission by sending snapshots of the stars over GSM networks using MMS (Multimedia

Messaging Services) phones. Nokia claims GSM GPRS speeds of up to 60 Kbps (more realistically 40 Kbps).
The Nokia/Sonera demonstration of video transmission was not even live. Very poor quality video images, with around ten fuzzy pictures a second, were shown from files previously transmitted, stored in memory and then replayed at the very low resolution (128×96 pixels).
Nokia's publicity material now refers to GPRS as "making possible the first true 3G services like MMS". 3G services, says Anssi Vanjoki, Executive VP Nokia Mobile Phones, are just cellphone services that are "more visual and easier to use". They can be delivered either by existing 2G GSM and 2.5G GPRS (General Packet Radio Service) networks which operate in the 900 MHz and 1800 MHz bands, or new 3G UMTS (Universal Mobile Telecommunications System) networks which use the WCDMA (Wideband Code Division Multiple Access) radio technology which operates in the 2.1 GHz band.

Nokia and Sonera switched on a WCDMA trial only in parts of Helsinki, Tampere, Turku and Oulu in January, and introduced MMS on GSM in June. 3G technology, says Vanjoki, will not be ready for commercial trials until the end of this year or beginning of next; there will be no consumer launch until tests prove "seamless interoperability. We shall not launch until everything is ready and working properly. Consumers are not forgiving. They are demanding".

Customise Your Cellphone

THANKS to coverfrenzy.com, you can now create your unique mobile phone cover with a picture of your choosing! Website coverfrenzy.com is new and lets you design your own mobile phone back cover. The image can be anything from a photograph, drawing or design of your own choice and all on the click of a mouse.
If it's inspiration you're looking for, there is also the Stars Gallery on the site, which offers a library of celebrity images on-line.
All you have to do is log on to coverfrenzy.com and simply position your chosen image on the phone template on-screen, position and size it to your preference. You can also add a text message, choose a free ring tone and even email a copy to your friends. Within a week, the finished cover is delivered to your door with a complementary front cover, all for just $£ 19.25$, including P\&P.
Currently covers can be designed for Nokia handsets 8310, 3210. 3310/3330 and 8210. There are plans to add more handset models and manufacturers shortly.
We are told that the process used to apply an individual image to the mobile phone is new, patented technology provided by MiCyte Ltd. The images produced are of true photograph quality and are highly resistant to surface damage. So, get mobile - scan in your favourite EPE cover and log on to coverfrenzy.com and really impress your friends!

Says Sonera, "The 3G services launched this autumn will operate initially in the present mobile network."

Little Faster Than Modems

Early talk of 3 G quoted data speeds of 2 Mbps , and promoted the idea of high quality moving video as a revenue-earner. The Nokia 6650 camera-phone will capture 640×480 VGA images and uses MPEG-4 video compression. But it displays only 128×96 pixels and Nokia now puts the practical limit for WCDMA at 384 Kbps . The new 6650 phone has been "limited" to 128 Kbps for downlink reception and 64 Kbps for uplink transmission. Sonera has limited its network to 64 Kbps in both directions - only slightly faster than a conventional phone modem. Says Anssi Vanjoki, "There is no way in practice higher data rates could be guaranteed".
Vanjoki and Harri Koponen, Sonera's CEO, say they hope to have 3 G working reliably by the end of the year and if "commercial, political and business issues" can be solved, start selling 3G handsets for business use. Consumers cannot expect to use 3 G until sometime in 2004, with a mass market not starting until 2005.
Harri Koponen Sonera's CEO admits the industry has not yet even been able to achieve interoperability even with GSM multimedia messaging; pictures can only be sent over a single network, e.g. Orange to Orange in the UK. "It is not a trivial thing, he says. "It is taking us a lot of time".
It is not hard to see why the International Telecommunications Union recently described 3G and the mobile Internet as "the biggest gamble the telecommunication industry has ever taken on". For more information browse www.itu.int/osg/spu/ publications/sales/mobileinternet/.

R.F. SCREENING

AS those of you who are into building circuits that can radiate into the electromagnetic spectrum should know, there are stringent regulations about keeping such radio frequency (r.f.) emissions to a minimum. To provide an "instant fix" when constructing equipment prone to r.f. radiation, Microponents Ltd of Birmingham have introduced a patented R.F. Screening System.
The system is very flexible, allowing the building of screening enclosures of various sizes, shapes and heights. The kit can currently be purchased directly from Microponents, although distribution rights will soon be issued.
For further information contact Andrew Owen, Commercial Manager, Microponents Ltd., Dept EPE, PO Box 162, 30 Curzon Street, Birmingham B4 7XD. Tel: 0121380 0100. Fax: 0121359 3313. Email: sales@microponents.com. Web: www.microponents.com.

OH YES, lots of you are going to love the novelty (and potential usefulness!) of the CD that we've received at the News Desk! It's titled The Rattler and is described as a Car Audio Test and Measurement Set-Up CD.
It is aimed at anyone who wishes to find those unwanted and noisy vehicle rattles and to accurately set up their in-vehicle audio system. There are around 70 tracks of various test tones and frequency sweeps. There are also four printed charts which provide an absolute reference guide when used in conjunction with certain CD tracks.

In the belief that any undesirable and unlocated noise in a vehicle could indicate a potential major repair cost, this CD could prove to be an absolute money saver when used as instructed.
For more information contact Broadcast Communication UK Ltd., Dept EPE, 155 Coventry Road, Ilford, Essex IG1 4RD. Tel: 0208554 3588. Fax: 0208554 8835. Email: bcluk@aol.com. Web: www.audio-repairs.com.

EASY-PC V6

NUMBER One Systems have told us that they have released Easy-PC for Windows Version 6.0. The original, and renowned, Easy-PC printed circuit board design package was first released in the late 1980's and has undergone various enhancements since then. Some of the new features include online design rule checking, library creation wizards, optimising vias, importing DXF files, colour by net in schematics, easy find and add components, single-shot processing, alignment of selected items, highlighting of unconnected pins, save/load colour files and more toolbars.
Existing customers are offered a cost-effective upgrade priced at £117. The list price for the full Easy-PC V6.0 product is $£ 397$. Delivery is quoted at $£ 6.50$.
For further information contact Number One Systems, Dept EPE, Oak Lane, Bredon, Tewkesbury, Glos GL20 7LR. Tel: 01684 773662. Fax: 01684 773664. Email: info @ numberone.com. Web: www.numberone.com.

Electronic Eyesight

ACCORDING to a story in the Daily Mail on 17 September ' 02 , an artificial retina has been invented which allows sight to be restored to those suffering certain types of blindness in which some of the retinal cells are undamaged.
The artificial retina is a chip about 2 mm wide, says the story, with 3500 to 5000 light sensors that convert light energy into electrical signals, which then directly stimulate the remaining cells in the retina. The system has already been implanted in several patients, who now experience varying degrees of sight restoration. It has also been found that the damaged retinal cells can be prompted to rejuvenate by the presence of the implant.
The technology allows the chip to be implanted behind the retina, where it is held in place by the pressures within the eye itself. It is powered by the light entering the eye and does not need additional connecting wires or batteries.

If larger scale trials and the experiences of those who have already had the chip implanted are successful, the technique could become available for more general use within about five years.
The technology is being reported on at the International Congress of Eye Research in Switzerland later this year. The Daily Mail's web site is at www.dailymail.co.uk.

YOU WON'T GET YOUR FINGERS B U R N T

It may surprise you but buying an Antex soldering iron costs less than you think in the long run. British made to exacting standards, they last significantly longer than imported brands. And with a wide range of thermally balanced soldering irons, you can pick up a "fixed temperature" or "in-handle" temperature model that will suit your needs perfectly.
None of which will burn a hole in your pocket.
If your hobby demands the best iron for the job but you don't want to get your fingers burnt by the cost, visit our website or your electronics retailer for the coolest models around.

Fluid Finder - Relatively Sirople

THe circuit diagram show in Fig.1. is capable of distinguishing between different liquids, or, alternatively, of helping to determine their purity. It may also be used to measure the level of highly corrosive liquids that would devour many types of probe.
A critical element of the formula used to determine the capacitance of a parallel-plate capacitor is the relative permittivity of the dielectric, or the dielectric constant $\left(\varepsilon_{\mathrm{r}}\right)$. Relative permittivity is defined as "capacitance with a material as the dielectric" divided by "capacitance with a vacuum or air as the dielectric".

Although the circuit is relatively crude, it will determine relative permittivity to within a fraction of one percent. It will therefore distinguish unfailingly between e.g. distilled water, tap water, and milk, and reveals vast differences between fluids such as water, alcohol, and oil.

Circuit Details

At the heart of the circuit is a custom-built parallel-plate capacitor C1, the "plates" of which are sealed in epoxy resin and separated by an air space. It is clipped into a liquid to determine its relative permittivity, which in turn is deduced from the capacitance measured by means of potentiometer VR1.
The frequency of RC oscillator ICla-IC1b is fed to a digital bandpass filter IC2a-IC2b, then VR1 is adjusted until l.e.d. D4 illuminates. The relative permittivity of distilled water (which can be designated as x) is then measured as 100,000 -VR1 ohms, and then the relative permittivity of any other fluid maybe calculated as:

$$
(100,000-\text { VR1 }) \times(78 / x) .
$$

This assumes that the relative permittivity of distilled water is 78 . Needless to say,
a quantity of distilled water is first required to determine the value of x . It is available from most garages for topping up car batteries.
The digital filter IC2 goes either "high" or "low" at output pin 9 until the desired frequency (about 100 kHz) is presented at the input. In this case a square wave at output pin 9 is detected by means of simple diode pump D2-D3 and C4-C5. When C5 charges, the input of IClc goes "high", and l.e.d. D4 illuminates. The 1.e.d. D1 is included for easier adjustment, as this shows whether the output is "high" or "low". With the oscillator typically operating at around 100 kHz , this would be multiplied by 78 if distilled water were replaced with air, which has a relative permittivity of about 1 . Switch S 1 is provided so that IC1 and IC2 are not overdriven in the absence of a liquid.

Fig.1. Circuit diagram for the Fluid Finder. The sensor "capacitor" assembly is shown inset.

Capacitor Details

The capacitor Cl was made from two plates of copper-clad board measuring $30 \mathrm{~mm} \times$ 40 mm , with the copper foils facing inwards. These were soldered to wires and then sandwiched in 80 gsm paper, which was coated twice with epoxy resin. The prepared plates were mounted 7 mm apart with nylon spacers.
The accuracy of the Fluid Finder is determined by resistor R4 which may be decreased for greater accuracy. Note that capacitor C 1 is affected by body capacitance, so keep it a few centimetres away from any part of the body for a more accurate reading.

Rev. Thomas Scarborough,
Fresnaye, South Africa

Switched Mode L.E.D. Nightlight - 几igghier

$\mathbb{N i g g h t s}$

ORDINARY plug-in night light bulbs tend to have a short life and using solid-state lamps is a sensible alternative. In the circuit diagram of Fig.2, ten ordinary bright yellow l.e.d.s. in series were used with a step-up switched-mode driver for minimum power consumption, powered by a small 9 V adaptor.

An astable oscillator based on a 555 timer is formed around IC1, running at 50 kHz , with diode D1 setting a duty cycle closer to 50%. This is used to drive TR1, an n-channel MOSFET power transistor. When TR1 is on, current flows through coil L1, magnetising its core. When TR1 turns off L1 induces a current through D2 and C3 to illuminate the ten 1.e.d. array (D3 - D12).

The use of a high frequency means that the 1.e.d.s illuminate at a constant value. When

Fig.2. Circuit diagram for the Switched Mode L.E.D. Nightlight.
the output voltage is approximately 22 V (required to light the l.e.d.s), the voltage across resistor R5 causes TR2 to switch on, which reduces the pulse width. In this way, the voltage is regulated at 22 V , and preset

VR1 should be adjusted as required. A toroid is suggested for L1. Capacitors C1 and C3 should ideally be switched-mode compatible types and have a low ESR.

Myo Min, Myanmar

WHY NOT SEND US YOUR CIRCUIT IDEA?

 Earn some extra cash and

 Earn some extra cash and possibly a prize!

 possibly a prize!}

SHOP h TALK with David Barrington

Versatile PIC Flasher

The PIC microcontroller used in the Versatile PIC Flasher project must be the one with the suffix A, i.e. PIC16F84A. For those readers unable to program their own PICs, a ready-programmed PIC16F84A (20MHz) microcontroller can be purchased from Magenta Electronics (© 01283565435 or www.magenta2000.co.uk) for the inclusive price of $£ 5.90$ each (overseas add $£ 1$ p\&p). The software is available on a 3.5 in . PC-compatible disk (EPE disk 5) from the EPE Editorial Office for the sum of $£ 3$ each (UK), to cover admin costs (for overseas charges see page 909). It is also available Free from the EPE ftp site: ftp://ftp.epemag.wimborne.co.uk/ pub/PICs/PICflasher.

The terminal block TB1, mounted directly on the p.c.b., is made up from five 3.81 mm 2 -way interlocking screw-terminal blocks. Most of our components advertisers should be able to supply, but if you have any problems they are currently listed by Rapid Electronics ($\mathbb{\circ} 01206751166$ or www.rapidelectronics.co.uk), code 21-1655. They also supplied the p.c.b. mounting 2.1 mm d.c. power socket, code 20-0970.

The printed circuit board is available from the EPE PCB Service, code 377. The type, colours and quantity of l.e.d.s is left to individual choice.

Door Defender

If you intend using a similar small plastic case to the one depicted in the photographs to house the Door Defender project, you will need to purchase a "low-profile", key-operated switch. Alternatively, go for a larger (depth) case, whichever is the cheaper option. The switch used in the prototype came from Maplin (\% 08702646000 or www.maplin.co.uk). code FE44X.

The same company also supplied the plastic moulded, surface mounting, reed switch/magnet, code YW47B. Most of our components advertisers should be able to advise on a suitable buzzer.

PICAXE Projects Pt. 2 - Temperature Sensor - Voltage Sensor

 - VU IndicatorReady-programmed HEX versions of the PICAXE-18 microcontroller for the PICAXE Projects can be purchased (mail order) from M. P. Horsey, Electronics Dept, Radley College, Abingdon, Oxon, OX14 2HR, for the inclusive sum of $£ 5.90$ each (overseas add $£ 1$ p\&p). Specify for which project the PICAXE is wanted and make cheques payable to Radley College.
Software for these designs (except PICAXE programming software) is available on a $3 \cdot 5 \mathrm{in}$. disk (Disk 5) from the EPE Editorial Office for the sum
of $£ 3$ each (UK), see page 909. It is also available for Free download from the EPE ftp site.
The "special" serial lead was supplied by Revolution Education (\% 01225340563 or www.rev-ed.co.uk), stock code AXE025. They also supplied the PICAXE programming software.
The same master printed circuit board is used for all the projects in this short series. It is available from the EPE PCB Service, code 373. All other components appear to be "off-the-shelf" devices. However, you do need to specify the L suffix when ordering the BC184L transistor as other 184's have differing pinout arrangements.

EPE Hybrid Computer

Most of the components for the Hybrid Computer appear to be mainly standard devices and only a few items could be classed as specials. Starting with the "heart" of the project, the BASICMicro Atom microcontroller compiled BASIC module can be purchased from Milford Instruments (\% 01977 683665 or www.milinst.com), code 1-316. Make it clear that it is the 24 -pin version you want. When you purchase this microcontroller, also enquire about a CD-ROM containing the ATOM software.
The Omron (G5V-2 series) 5V d.c. 50 ohms coil p.c.b. mounting relays were obtained from Farnell (雫 01132636311 or www.farnell.com), code 179-350. They also supplied the vertical, snap-in, p.c.b. mounting rotary pots. (VR1 to VR10), code 918-878.
The large double-sided printed circuit boards (codes 375 (Main) and 376 (Atom)) are available from the EPE PCB Service - see page 909 for details and prices.

PLEASE TAKE NOTE
Digital I.C. Tester
Page 720, Fig.2. L.E.D. D4 should be reversed so that the (Oct '02) lead goes to pin 17 of IC3. The circuit diagram is correct.

Ingenuity Unlimited

(Nov '02)
Page 825 Wien Oscillator. Fourth paragraph, second equation should read $\sqrt{(R 2 / V R 1)}$

Page 827, Tape Tone Index Marker (Fig.4). The wrong callsign was attributed to Fred Knight which should have been G4GAN. We apologise to Dave McQue G4NJU for using his callsign. We understand that the oscillator (IC2) is based on Dave's original circuit idea.

Transient Tracker

(Nov '02)
It has been pointed out that Class-Y capacitors are for use between mains and Earth and NOT directly across the mains supply as indicated in Shoptalk (page 823).

Class-X types are, of course, meant for continuous operation/connection across the mains supply. But they should NOT be used where failure would expose anyone to an electric shock hazard.

Constructional Project DOOR DEFENDER

STEVE DELLOW

> Keep an armed guard on your door or valuables with this self-contained, truly portable, low-cost audio/visual alarm

WHETHER we are brave enough to admit it or not, we all suffer varying degrees of paranoia when it comes to the doors in our life. Was that someone sneaking in the front door? Did we leave the back door open? Where's the padlock on the shed door? Should we have a mortise or a night latch?
The list goes on and on . . . There isn't a day goes by when we don't suffer some stress event associated with a door!
Perhaps the circuit described here might help put some of those fears at rest. The Door Defender is a simple circuit intended to monitor the opening and closing of a single door, but it could easily be expanded into a comprehensive system.
It can be used with any type of internal or external opening, and consumes very low current in standby. For instance, the long battery life would make it ideal for protecting a garden shed. On the other hand, its small size could allow it to be a portable unit for protection when travelling.

DESIGN OVERVIEW

It was decided to create a door monitoring circuit based on the reliable reed switch and magnet method. This would
feed information into a circuit designed to indicate whether the door was open or shut. An "arming" sequence would begin with the door closed i.e. you're getting ready to leave, followed by a turn of a keyswitch to apply power to the circuit. The unit would signal that it had entered the arming sequence which prompts you to open the door and leave, closing it behind you.

The action of opening and shutting the door would be detected by the circuit which would then move into an "armed" mode. The next time the door was opened, the system would immediately turn on and latch the alarm. This would only be cleared by switching off the unit with the keyswitch, even if the door was closed again.

CIRCUIT DESCRIPTION

The complete circuit diagram for the Door Defender is shown in Fig.1. Power for the circuit comes from a 9 V alkaline battery, which is ideal to supply the CMOS i.c.s that control the alarm process. As mentioned earlier, a reed switch, S 2 , is used to detect the opening and closing of the door. These items are standard in most
burglar alarm systems and are usually employed to monitor the entry/exit route.

They consist of two main components the reed switch and a magnet. When the two are positioned adjacent and "in-line" i.e. when the door is properly closed, the reed switch physically aligns itself with the lines of flux from the magnet, causing the contacts to close. They are generally good enough to detect a door even slightly ajar.

Unfortunately, like all switches, the reed type is liable to "bounce" when closing. In other words, the contacts do not necessarily come together cleanly, and for a very brief fraction of a second, they may open again one or more times before they finally settle. The bounce may appear to us to be over very quickly, but in logic terms, it is a lifetime, and the circuit will detect every "bounce" as an opening and closing of the door! The ideal recipe for a very confused circuit!

Components R2, C1 and IC1b come to the rescue here, forming a "debounce" circuit. Basically we are using an $R C$ slowdown network to drive the Schmitt trigger gate IC1b. The low-pass filter formed by resistor R2 and capacitor C 1 smoothes out the bounces of the switch contacts so that IC1b makes only one transition. A time constant of 10 ms to 25 ms is generally enough.

ON GUARD

Now that we have a clean reliable signal telling us what the door is doing, we can

Fig.1. Complete circuit diagram for the Door Defender.
start doing something useful with that information.

When we look carefully at the design concept, it becomes clear that we need to produce a circuit that remembers the sequence of door movements so that we can correctly control the alarm operation. In a more complicated system we might use a microcontroller, but here the sequence is so simple we can use a couple of bistables, or flip-flops.

These circuit blocks are characterised by the fact that they are stable in one of two logic states (as opposed to monostables, which are stable in only one state, and astables, which continually oscillate between the two). The condition they adopt is dependent on changes of logic state at two or more inputs.

The type of flip-flop used here is a Dtype (Data type), which is designed for data-related applications where it is desirable to "remember" the state of an input at a point in time defined by a clock signal. In this circuit it is actually wired as a T-type (Toggle-type), which results in the Q output "toggling" (switching to the opposite logic state) every time there is a rising edge at the clock input.

Since the flip-flops can adopt either state at power-up, it is important to perform a reset operation every time at switch on. Components C2 and R3 form a rather unorthodox yet effective reset circuit. When power is applied, the "hot" end of resistor R3 initially goes high (about 9V), but this voltage drains away very quickly down to zero. Despite this voltage fall, it is high for long enough to put the two flip-flops into the desired states - IC2a has its Q output forced high, whereas the Q pin on IC2b is forced low. So we know we are starting from the same point every time.

ARMED GUARD

At power-up, we want to enter the "Arming" mode because we are getting ready to leave the room, and the circuit signals this visually by flashing l.e.d. D1 just like an expensive system! This is driven by an oscillator formed around IC1c it is configured so that the output cycles between high and low logic states at a rate of about 1 Hz , this frequency being controlled by capacitor C3 and resistor R4.

The Q output of IC2a (pin 1) enables the oscillation process - the l.e.d. D1 will only flash if it is high. Therefore, in this enabled state IC1c now operates as a simple inverter.

While IC1c is operating as an inverter, pin 10 will always be the opposite logic level to pin 9, and when this pin is below the switching threshold, pin 10 is high and charge flows onto C3, causing the voltage on the capacitor to rise towards the supply voltage . . . but it never gets there! When the voltage on pin 9 reaches the upper Schmitt input threshold, the output switches i.e. pin 10 goes low, and the charge on capacitor C3 starts discharging again, the rate being controlled by resistor R4. Now the voltage falls (exponentially) towards the ground rail $(0 \mathrm{~V})$, but once again, it never arrives. As the lower Schmitt threshold is reached it's all change again, and pin 10 returns to a high state.

Because of this process the voltage on pin 9 moves continuously between the two threshold levels, producing an output

voltage at pin 10 that oscillates between supply and ground. That is one way to turn a standard l.e.d. into a flasher! The chosen values give a rate of about 1 Hz .

To protect the charge/discharge process, we introduce a buffer stage in the form of IC1d. This is because we need to push some charge into transistor TR1 to make it drive the "Arming" l.e.d. - this way we do not upset the charge that's moving around in the R4/C3 circuit. Series resistor R6 limits the current through the l.e.d. to a safe level, about 15 mA .

The circuit remains in this state, with 1.e.d. D1 flashing, until you open the door in preparation for departure.

Reed switch S2 detects the opening of the door, causing the voltage at the junction of resistors R1 and R2 to fall to 0 V . The input conditioning at IC1b converts this to a logic level change that is fed into the clock input pin 3 of IC2a. The arrival of a rising edge (a change of state from low to high logic level) toggles the flip-flop and the Q output goes low, switching off "Arming" 1.e.d. D1. Although the clock input to IC2b at pin 11 is connected to the Q output of IC2a, there is no change to its state, as it sees a falling edge.

ABSOLUTE MAYHEM

The closing of the door causes no further changes to the circuit, apart from the clock input to IC2a (pin 3) returning to the low state. There is no change to either of the flip-flop outputs as their clock inputs only respond to rising edges, and the Door Defender now settles into "Monitoring" mode - both the l.e.d.s are off, and it consumes very little current making sure that the battery is kept fresh for Alarm action!

Everything happens when the door reopens! - breaking the magnet/reed switch "influence". A rising edge into the clock input of IC2a at pin 3 toggles the state of its outputs - the Q output moves from low to high which is a rising edge. This logic change is also seen at the clock input to IC2b (pin 11) causing it, too, to toggle the state of its outputs, since it is also wired as a T-type. The change in the state of IC2b sounds the alarm!

Using IC1a as a buffer to drive transistor TR2, the low output from pin 12 of IC2b brings on the Alarm 1.e.d. D2 and also "fires" the warning Alarm sounder WD1. You may also note that the Arming 1.e.d. starts flashing too! Absolute mayhem - just what we want!

Capacitors

C1	100n disc ceramic
C2	10 n disc ceramic
C3	47μ min. radial elect. 16 V

Semiconductors

D1, D2	5mm l.e.d. red (2 off)
TR1, TR2	BC108 npn low power transistor (2 off)

Miscellaneous

S1	single-pole make/break miniature round key-operated switch
	2-piece plastic moulded
S2	reed switch, with
	magnet
WD1	4V to 9V min. buzzer
B1	9V alkaline battery (PP3
	type), with clips

Stripboard, size 21 holes x 23 strips; plastic handheld box, with battery compartment, size $105 \mathrm{~mm} \times 62 \mathrm{~mm} \times 28 \mathrm{~mm}$ approx; 14-pin d.i.l. socket (2 off); multistrand connecting wire; wire links; solder pins; solder etc.

Now, the design requirement is that the Alarm shall continue to sound even when the door is shut again - in other words it "latches" until the authorised keyholder turns the power off. This is where the connection between IC2b pin 12 and IC1b input pin 5 comes in to play.

At switch-on, the reset circuit ensures that this line is high, and this allows the reed switch signals through to IC2a. We already know that IC2b toggles when the circuit goes into Alarm mode. This immediately changes the signal to IC1b and disables the gate, preventing further door signals being processed

As long as pin 5 (IC1b) is low, the output of the gate can never go high and create a rising edge - the circuit is "latched" in the Alarm mode, and continues to sound no matter how many times you open and close the door! A turn of the keyswitch S1 is the only way.

CONSTRUCTION

The original concept was that the finished unit could be easily fixed to a bedroom or workshop door. The chosen enclosure results in a very compact fit but produces a handy little "Defender". There's no reason why it could not be housed in a larger box, especially if you're thinking of expanding the circuit to create a full blown intruder detection system.
Construction should commence by preparing the case to accept the off-board components. A general layout guide can be seen in the accompanying photographs. Note the cutouts in the stripboard.

Start by preparing the stripboard to the suggested shape, the layout will be dictated by the off-board components used, particularly the clearance required for the keyswitch S1. Once you have cut the board to the desired shape, temporarily place it in the base of the case and check for a satisfactory fit.

When you're happy, remove it and begin to make the breaks in the copper tracks there are 24 in all. A small handheld twistdrill or a dedicated stripboard cutter tool will do the trick. Examine the board carefully after each cut to make sure that the break is clean and complete - a magnifying glass will help here.

The stripboard topside component layout and details of breaks required in the underside copper tracks are shown in Fig.2. The interwiring details to the offboard components are also shown in this diagram. The reed switch housing is bolted on one of the outside case panels - see photograph.

Fit all the lead-off solder pins and wire links - quite a tedious job but it helps define the layout. Again, keep checking against the layout drawing at every opportunity. Once all the links are in place, solder in the two 14-pin i.c. sockets, making sure that they're the right way round. Don't fit the chips yet.

Next, the resistors can now be added. Most lie flush to the board, but a few stand almost vertical. Then it's on to the capacitors - C3 is polarity conscious so check that the positive $(+)$ lead is in the right hole.

The final components are the two transistors. Again, have a careful look at Fig. 2 to be sure that you've identified their pins correctly and then solder them in position.

Completed wiring between the two halves of the case.

Before continuing, take time to check the circuit board just one more time. It is not only a case of confirming that all the components are in the right place but also that there are no solder splashes, bridges, etc. on the copper side.

BOARD CHECK

The next job is to do some basic checks on the circuit board. Set your multimeter to the lowest resistance scale and measure across the +V and 0 V terminals. What you

Fig.2. Door Defender stripboard component layout, interwiring to off-board components and details of breaks required in underside copper tracks. Note the board cutouts to take the keyswitch and reed switch fixing.

are looking for here is any short circuit between the rails, i.e. less than one or two ohms.

Once the multimeter is giving good news, attach a 9 V battery across the same terminals. Check that there is a nice steady voltage across pin 7 and pin 14 of the i.c. sockets. If everything is okay go ahead and finish the installation

FINAL ASSEMBLY

Start by taking the reed switch and attaching two lengths of wire to the internal terminals - measure the resistance across them. In isolation, the reading should be open circuit but if you bring the magnet alongside the reed switch there's a point where the contacts close. This is a good test to see if you've wired it up correctly and that the switch responds to the presence of the magnet. Make sure that the contacts open again when the magnet is removed.

The reed switch module can now be securely attached to the case side panel and the circuit board screwed securely in place. Now it's just a matter of doing the wiringup - connecting the l.e.d.s, reed switch, buzzer, keyswitch, and battery clip as shown in Fig.2.

Finish by doing another multimeter check to confirm that no short circuits have crept in, and that the keyswitch S1 is working correctly. If everything looks good, insert the two i.c.s in their holders. Orientation is everything here, so make absolutely sure you've got them the right way round. Don't mix up the 4013 and 4093 and look out for pins bent underneath!

TESTING

Testing of the Door Defender is quite simple. Turn off the keyswitch, fit the battery, and temporarily tape the magnet block in line with the reed switch S2. Now turn the key to apply power to the circuit. Neither of the l.e.d.s should be lit and the buzzer WD1 should be silent.

Now detach the magnet, moving it well away from the reed switch. The "Arming" l.e.d. D1 should begin flashing, indicating that the circuit has detected that the contacts have opened. Now bring the magnet back in-line with the reed switch. The Arming l.e.d. should go out.

Finally, remove the magnet again. This time, both l.e.d.s (D1, D2) should light and buzzer WD1 sound. Replacing the magnet will have no effect and the only way to reset the system is by turning the keyswitch. If all is well, the box can be screwed together and the system is ready for use!

IN USE

The Door Defender will be found useful in all sorts of applications, although it should not be used in an unattended public position as it does not have an automatic cut-off timeout for the alarm sounder. Installation requirements are not critical, simply that the magnet and reed switch parts are consistently aligned when the door/window is shut. Also, there is no reason why the reed switch needs to be mounted on the box - you could locate the alarm unit remotely and run a cable to the sensor (reed/magnet). The intruder would be unaware of detection!
You could pack it in your suitcase and use it to protect a hotel door, or monitor
movements in and out of the workshop. Perhaps it might work as a child alarm warning you if Junior has found their way into your den or wandered from their bedroom/playroom? What about using it to protect your toolbox from prying little hands?! Whatever the need, it can be quickly set up and provide sterling service

If you're feeling adventurous, why not expand the basic system to create something more comprehensive? Further switches could be added (normally closed types wired in series) to monitor windows and other doors, while the l.e.d.s could be replaced with relays or opto-isolators to drive floodlamps, strobes, or sirens. There's nothing like going over the top!

NEXT MONTH - IT'S FULL SPEED AHEAD!

PIC WIND SPEED MONITOR

EPE MINDER

F.M. FREQUENCY SURFER

Annual subscription rates:

6 Months: UK $£ 15.50$, Overseas $£ 18.50$ (standard air service), $£ 27.50$ (express airmail)
1 Year: UK £29.50, Overseas £35.50 (standard air service) £53 (express airmail)
2 Years: UK £54.00, Overseas £66.00 (standard air service) £101 (express airmail)
To: Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND

Tel: 01202873872 Fax: 01202874562
E-mail: subs@epemag.wimborne.co.uk
Order from our online shop at: www.epemag.wimborne.co.uk/shopdoor.htm

TAKE ADVANTAGE NOW!

SUBSCRIPTION ORDER FORM

I enclose payment of $£$..............
(cheque/PO in $£$ sterling only),
payable to Everyday Practical Electronics

My card number is:
Please print clearly, and check that you have the number correct
Signature
Card Ex. Date \qquad
\qquad
Subscriptions can only start with the next available issue. For back numbers see the Back Issues page.

E1 BARGAIN PACKS Selected items

PIEZO ELECTRIC SOUNDER, also operates efficiently as a microphone. Approximately 30 mm diameter, easily mountable, 2 for $£ 1$. Order Ref: 1084.
LIQUID CRYSTAL DISPLAY on p.c.b. with i.c.s etc. to drive it to give 2 rows of 8 figures or letters with data. Order Ref: 1085.
30A PANEL MOUNTING TOGGLE SWITCH. Double-pole. Order Ref: 166
SUB MIN TOGGLE SWITCHES. Pack of 3. Order Ref: 214.
HIGH POWER 3in. SPEAKER (11W 8ohm). Order Ref: 246.
MEDIUM WAVE PERMEABILITY TUNER. It's almost a complete radio with circuit. Order Ref: 247.
HEATING ELEMENT, mains voltage 100W, brass encased. Order Ref: 8.
MAINS MOTOR with gearbox giving 1 rev per 24 hours. Order Ref: 89.
ROUND POINTER KNOBS for flatted $1 / 4 \mathrm{in}$. spindles. Pack of 10. Order Ref: 295
CERAMIC WAVE-CHANGE SWITCH. 12-pole, 3 -way with $1 / 4 \mathrm{in}$. spindle. Order Ref: 303.
REVERSING SWITCH. 20A double-pole or 40A single pole. Order Ref: 343.
LUMINOUS PUSH-ON PUSH-OFF SWITCHES. Pack of 3. Order Ref: 373.
SLIDE SWITCHES. Single pole changeover. Pack of 10. Order Ref: 1053.
PAXOLIN PANEL. Approximately 12in. x 12in. Order Ref: 1033.
CLOCKWORK MOTOR. Suitable for up to 6 hours. Order Ref: 1038
HIGH CURRENT RELAY, 12 V d.c. or 24 V a.c., operates changeover cocntacts. Order Ref: 1026. 3-CONTACT MICROSWITCHES, operated with slightest touch, pack of 2. Order Ref: 861.
HIVAC NUMICATOR TUBE, Hivac ref XN3. Order Ref: 865 or XN11 Order Ref: 866.
2IN. ROUND LOUDSPEAKERS. 50Ω coil. Pack of 2. Order Ref: 908

5K POT, standard size with DP switch, good length $1 / 4$ in. spindle, pack of 2 . Order Ref: 11R24. 13A PLUG, fully legal with insulated legs, pack of 3. Order Ref: GR19.

OPTO-SWITCH on p.c.b., size 2in. x 1in., pack of 2. Order Ref: GR21.

COMPONENT MOUNTING PANEL, heavy paxolin 10in. x 2in., 32 pairs of brass pillars for soldering binding components. Order Ref: 7RC26.
HIGH AMP THYRISTOR, normal 2 contacts from top, heavy threaded fixing underneath, think amperage to be at least 25 A, pack of 2 . Order Ref: 7FC43.
BRIDGE RECTIFIER, ideal for 12 V to 24 V charger at 5A, pack of 2. Order Ref: 1070.
TEST PRODS FOR MULTIMETER with 4 mm sockets. Good length flexible lead. Order Ref: D86. LUMINOUS ROCKER SWITCH, approximately 30 mm square, pack of 2. Order Ref: D64.
MES LAMPHOLDERS slide on to $1 / 4 \mathrm{in}$. tag, pack of 10. Order Ref: 1054
HALL EFFECT DEVICES, mounted on small heatsink, pack of 2. Order Ref: 1022.
LARGE MICROSWITCHES, $20 \mathrm{~mm} \times 6 \mathrm{~mm} \mathrm{x}$ 10 mm , changeover contacts, pack of 2. Order Ref: 826.
MAINS RELAY with 15A changeover contacts. Order Ref: 965.
COPPER CLAD PANELS, size 7in. x 4in., pack of 2. Order Ref: 973.

100M COIL OF CONNECTING WIRE. Order Ref: 685.
WHITE PROJECT BOX, $78 \mathrm{~mm} \times 115 \mathrm{~mm} \times 35 \mathrm{~mm}$. Order Ref: 106.
LEVER-OPERATED MICROSWITCHES, exequipment, batch tested, any faulty would be replaced, pack of 10. Order Ref: 755.
MAINS TRANSFORMER, $12 \mathrm{~V}-0 \mathrm{~V}-12 \mathrm{~V}, 6 \mathrm{~W}$. Order Ref: 811.
OVER 1,000 PACKS are described in our latest packs list, but as this costs us approximately $£ 1$ to produce, please send this amount if you would like details of these packs. The $£ 1$ will be credited to you directly you buy $£ 10$ worth of packs.

SOME SPECIAL HALF PRICE OFFERS

DYNAMIC MICROPHONE. 500 ohm, plastic body with black mesh head, on/off switch, good length lead and terminated with audio plug. Price $£ 1$. Order Ref: 2P220.

HORN SPEAKER Polished metal with
base, 8 ohm 5 W . $£ 2$ base, 8 ohm 5 W . $£ 2$
or 100 for $£ 150$. or 100 for
Order Ref:
$7 B O T 43$.

BRIDGE RECTIFIER. 3 A 250 V . For p.c.b. or normal mounting. 4 for £1. Order Ref: 1083.

1A SOLAR CELL. Best type, has bubble lens on face. £1 each. Order Ref: 35P2
VERY UP TO DATE 35MM CAMERA. This is motorised, is focus free, has autoflash, autofilm advance, autofilm rewind and DX coating. This is brand new and nicely boxed. Price to you £5. Order Ref: 10P161.
IT IS VERY POWERFUL. In fact it is almost $1 / 4$ h.p. and can be driven by a 12 V battery, so one on each wheel would drive a go-kart and its passenger. Made by the famous Smiths company, this motor should give a good, long, trouble-free service. Offered at £12 each or if you order a pair, then you can have the pair for £20. Order Ref: 12 P 41 .

SELLING WELL

BUT STILL AVAILABLE
IT IS A DIGITAL MULTITESTER, complete with backrest to stand it and hands-free test prod holder. This tester measures d.c. volts up to 1,000 and a.c. volts up to 750 ; d.c. current up to 10A and resistance up to 2 megs. Also tests transistors and diodes and has an internal buzzer for continuity tests. Comes complete with test prods, battery and instructions. Price $£ 6.99$. Order Ref: 7P29.
INSULATION TESTER WITH MULTIMETER. Internally generates voltages which enable you to read insulation directly in megohms. The multimeter has four ranges, AC/DC volts, 3 ranges DC milliamps, 3 ranges resistance and 5 amp range. These instruments are ex-British Telecom but in very good condition, tested and guaranteed OK, probably cost at least $£ 50$ each, yours for only $£ 7.50$ with leads, carrying case $£ 2$ extra. Order Ref: 7.5P4. REPAIRABLE METERS. We have some of the above testers but slightly faulty, not working on all ranges, should be repairable, we supply diagram, $£ 3$. Order Ref: 3 3176.
1 mA PANEL METER. Approximately $80 \mathrm{~mm} \times 55 \mathrm{~mm}$, front engraved $0-100$. Price $£ 1.50$ each. Order Ref: 1/16R2.
VERY THIN DRILLS. 12 assorted sizes vary between 0.6 mm and 1.6 mm . Price $£ 1$. Order Ref: 128 .

EVEN THINNER DRILLS. 12 that vary between 0.1 mm and 0.5 mm . Price $£ 1$. Order Ref: 129 .
D.C. MOTOR WITH GEARBOX. Size 60 mm long, 30 mm diameter. Very powerful, operates off any voltage between 6 V and 24 V D.C. Speed at 6 V is 200 rpm , speed controller available. Special price $£ 3$ each. Order Ref: 3P108.
FLASHING BEACON. Ideal for putting on a van, a tractor or any vehicle that should always be seen. Uses a Xenon tube and has an amber coloured dome. Separate fixing base is included so unit can be put away if desirable. Price £5. Order Ref: 5P267.
MOST USEFUL POWER SUPPLY. Rated at 9 V 1 A , this plugs into a 13 A socket, is really nicely boxed. $£ 2$. Order Ref: 2P733.
MOTOR SPEED CONTROLLER. These are suitable for D.C. motors for voltages up to 12 V and any power up to $1 / 6 \mathrm{~h} . \mathrm{p}$. They reduce the speed by intermittent full voltage pulses so there should be no loss of power. Made up and tested, $£ 15$. Order Ref: 20P39.
BALANCE ASSEMBLY KITS. Japanese made, when assembled ideal for chemical experiments, complete with tweezers and 6 weights 0.5 to 5 grams. Price $£ 2$. Order Ref: 2P44.
CYCLE LAMP BARGAIN. You can have 1006 V 0.2 A MES bulbs for just $£ 2.50$ or 1,000 for $£ 20$. They are beautifully made, slightly larger than the standard 6.3 V pilot bulb so they would be ideal for making displays fo night lights and similar applications. HEAVY DUTY POT
Rated at 25 W , this is 20 ohm resistance so it could be just right for speed controlling a d.c. motor or device o to control the output of a high current amplifier. Price $£ 1$ Order Ref: 1/33L1

RELAYS

We have thousands of relays of various sorts in stock, so if you need any thing special give us a ring A few new ones that have ust arrived are special in that they are plug-in and come complete with a spe cial base which enables you to check voltages of con-
nections of it without having to go underneath. We have 6 different types with varying coil voltages and contact arrangements.
Coil Voltage Contacts 2V DC 4-pole changeover 24 V DC $\quad 2$-pole changeover 4 V DC 2 -pole changeover Prices include base
MINI POWER RELAYS
For p.c.b. mounting, size $28 \mathrm{~mm} \times 25 \mathrm{~mm} \times 12 \mathrm{~mm}$, all have 16A changeover contacts for up to 250V. Four versions available, they all look the same but have different coils:
6 V Order Ref: FR17
2V Order Ref: FR18
24V Order Ref: FR19
48 V Order Ref: FR20
Price $£ 1$ each less 10% if ordered in quantities of 10 , same or mixed values.
4 CIRCUIT 12V RELAY Quite small, clear plastic enclosed and with plug-in ags, $£ 1$. Order Ref: 205 N .

NOT MUCH BIGgER than an oxo cube. Another relay just arrived is extra small with a 12 V coil and 6 A changeover contacts. It is sealed so it can be mounted in any position or on a p.c.b. Price 75 p each, 10 for $£ 6$ or 100 for $£ 50$. Order Ref: FR16.
BIG POWER RELAY. These are open type fixed by screws into the threaded base. Made by Omron, their ref: MM4. These have 4 sets of 25A changeover conacts. The coil is operated by 50 V AC or 24 V DC, price £6. Order Ref: 6P.
SIMILAR RELAY but smaller and with only 2 sets of 25 A changeover contacts. Coil voltage 24 V DC, 50 V AC $£ 4$ Order Reff 4 P
BIG POWER LATCHING RELAY. Again by Omron, their ref: MM2K. This looks like a double relay, one on top of the other. The bottom one has double-pole 20A changeover contacts. The top one has no contacts but when energised it will lock the lower relay either on or off depending on how it is set. Price £6. Order Ref: 6P.
RECHARGEABLE NICAD BATTERIES. AA size, 25 p each, which is a real bargain considering many firms charge as much as $£ 2$ each. These are in packs of 10, coupled together with an output lead so are a 12 V unit but easily divideable into $2 \times 6 \mathrm{~V}$ or $10 \times 1.2 \mathrm{~V}$. $£ 2.50$ per pack, 10 packs for $£ 25$ including carriage. Order Ref: 2.5P34.

THREE NEW BUY ONE GET ONE FREE OFFERS

CUPBOARD ALARM. Activated by light. When set, this alert is designed to let you know when small hands open medicine cupboards, drawers, desks or other places they shouldn’t. Price £3. Order Ref: 3P155. WATER LEVEL ALARM. When water reaches its sense head, its internal alarm sounds. It is a ready-built unit which you fix above where you want to know the water has risen. It then sounds its internal alarm. Needs only a battery. Price £3. Order Ref: 3P156.
THE GUEST 35MM MOTORISED CAMERA. It is focus free, auto flash, auto film advance, auto film rewind and has DX coating. Brand new, recently offered at £10 each, now you get 2 for $£ 10$. Order Ref: 7BOT16.
$1.5 \mathrm{~V}-6 \mathrm{~V}$ MOTOR WITH GEARBOX. Motor is mounted n the gearbox which has interchangeable gears giving a range of speeds and moto instructions for changing full instructions for changing gear and calculating
MINI BLOWER HEATER. 1 kW , ideal for under desk or airing cupboard, etc., needs only a simple mounting frame, price £5. Order Ref: 5P23.

TERMS

Send cash, uncrossed PO, cheque or quote credit card number. If order is $£ 25$ or over deduct 10% but add postage, $£ 3.50$ if under 2 kilo, $£ 6$ if under 4 kilo, $£ 9$ if over 4 kilo.

> J \& N FACTORS Pilgrim Works (Dept.E.E.) Stairbridge Lane, Bolney Sussex RH17 5PA Telephone: 01444881965 E-mail: jnfactors@aol.com

Special Feature

ALTERNATIVE USES FOR TRANSISTORS

NED STEPHENS

A look at the other uses to which transistors can be applied

TRANSISTORS have many uses which are well known, such as amplifiers, oscillators and switches, but have many further uses, some of which are not as well known. A knowledge of these other uses can be helpful when a particular component is not immediately available but is required for gadgeteering or experimentation.

For instance, if a Zener diode of a particular voltage is needed for a constructional project, but is not available in the spares box, then it may be possible to use a transistor instead. Transistors may also be used in place of signal diodes, rectifier diodes, varicap diodes, tunnel diodes, constant current sources, and even solar cells.

In some cases, a transistor pressed into such service may be superior to a purpose made part and may reduce the circuit's total parts count.

SIGNAL DIODES

When a current is passed through a diode in the forward direction, the diode acts as a non-linear resistor, such that the effective resistance is large at small voltages, but reduces as the voltage increases. This has the effect that there is no appreciable current flow through the diode until the voltage across it has risen above a certain value. In the case of a germanium diode this is approximately 0.3 volts, and in the case of a silicon diode it is about 0.7 volts.
If you wish to detect a small r.f. voltage in a crystal set, for instance, then it is better to use a diode with the lowest possible voltage drop, i.e. a germanium one.
So much for standard practice - results are better if we use a transistor instead. A transistor measured with an ohmmeter appears to be two diodes, one connected from base to emitter and the other between base and collector. Either of these apparent diodes may be used as real diodes, the third connection of the transistor being left open circuit.
We can, however, do better than this by connecting the base of the transistor to the collector and using that common connection as one diode connection, whilst the other

Fig.1. Test circuit for "transistor" superdiode and Zener diode.

Table 1: Forward voltage drop comparisons

Diode	Construction	Emitter-base junction at $\mathbf{1 0 0 \boldsymbol { A }}$	Superdiode at $100 \boldsymbol{\mu} \boldsymbol{A}$
OA91	Germanium diode	0.184 V	
1N914	Silicon diode	0.509 V	
2N1307	Germanium transistor	0.137 V	0.077 V
AC128	Germanium transistor	0.105 V	0.046 V
OC71	Germanium transistor	0.097 V	0.038 V
BC107	Silicon transistor	0.610 V	0.553 V
BCY31	Silicon transistor	0.511 V	0.487 V
2N3904	Silicon transistor	0.640 V	0.627 V

diode connection goes to the transistor emitter, making a so-called "superdiode". Which of these connections is the diode anode (a) and which is the cathode (k) depends on whether you are using a pnp or an npn transistor.

Due to the amplifying action of the transistor, the effective resistance of this new superdiode is as low as, or lower than, that of a purpose built diode, so that its use in signal circuits will enable the detection of smaller r.f. voltages. Table 1 shows forward voltage drops of base-emitter junctions and superdiodes, and the drops of germanium and silicon purpose built diodes for comparison.

We see that this trick of connecting a transistor as a superdiode is much more successful with germanium transistors than with silicon. With germanium the forward voltage drop may be more than halved, but for all the many different types of silicon transistor that were tried the forward voltage was only reduced by about 10 per cent or so.

It is apparent that a germanium transistor connected as a superdiode, i.e. with the base connected to the collector, begins to conduct in the forward direction with much smaller applied voltages. In order to check out the characteristics of this new device the circuit of Fig. 1 may be used.

Sample curves of an OC72 germanium transistor used in this fashion are shown in Fig.2, along with the curve of a germanium diode type OA91 for comparison. Practical tests with a standard crystal set circuit show that a germanium diode is indeed better than one made of silicon, but a germanium r.f. transistor in the superdiode configuration is best of all.

RECTIFIER DIODES

Large power transistors may be used as rectifiers in this fashion and, as above, germanium transistors used in the superdiode configuration at low currents show much more reduction of forward voltage drop than do silicon types. The list in Table 1, however, is for signal diodes and refers to only small diode currents. It should be noted that the voltage drop at higher currents will be less for silicon than for germanium, so that when substituting components germanium should be used for low currents and silicon for anything above about 10 mA .

It must be remembered that the current flow is through the base-emitter junction of the transistor, which is not its normal mode of operation. The author has been unable to find any data relating to the maximum permissible base currents. However, data books listing transistor saturation voltages quote the base current used, in the case of the BD239 this is 200 mA and for a BUX98 it is 4.0 amps (Ref.1), with most silicon power transistors quoted as using base currents between these two figures. Using transistors in place of rectifier diodes at these current levels will be fine, but care should be taken if exceeding them by a large margin.

ZENER DIODES

If the superdiode connection is used in the reverse direction then it will be seen that the transistor now exhibits a Zener characteristic. Several different types of transistor were tested using the circuit in Fig. 1 to see which Zener voltages were available. The results are shown in Table 2.

Table 2: Transistors as Zener diodes

Transistor	Voltage	Transistor	
2Noltage			
2N3553	5.57	BFY18	8.11
2N2843	6.06	BSY26	8.15
2N4037	6.18	2N13I07	8.22
BFX29	6.35	BC148	8.38
2S847	7.16	BFX85	8.44
BSY27	7.38	BC639	8.72
2N3904	7.66	BC109	9.05
BC107	7.97	2N696	9.21
2N1613	8.08	BSY85	9.43

The same formula may be used except that the constant should be approximately doubled, i.e. to approx. $1 \cdot 10((\mathrm{R} 1+$ R2)/R2) volts. The methods of connecting these "Zeners" is shown in Fig.4.

LOW LEAKAGE DIODES

If a diode with infinitesimal reverse leakage current is required then one can be made from an ordinary n-channel f.e.t. By

Fig.2. Forward biased germanium junctions.

These were all measured with a current of 1 mA flowing through the device. In some cases several different individual transistors with the same type number were tested and all gave results within five per cent of each other.
In addition to the use of a transistor in this fashion to obtain a fixed Zener voltage, we may connect one in a way that we are able to select our own Zener voltage. By connecting a transistor as shown in Fig.3, a "Zener" may be made with any desired Zener voltage by varying the ratio of the two resistors.
For instance, when using a BC109 at a current of 1.0 mA , the Zener voltage is given by 0.63 ($\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2)$ volts. Examples of this method are: using R1 = $\mathrm{R} 2=10 \mathrm{k} \Omega$ the Zener voltage is 1.25 V , and using R1 $=30 \mathrm{k} \Omega, \mathrm{R} 2=10 \mathrm{k} \Omega$ then we obtain $2 \cdot 50 \mathrm{~V}$, both measured with a Zener current of 1.0 mA .
Plotting the voltage/current curves of this connection shows that there is quite a high slope resistance, but this may be overcome by using a Darlington transistor, or two transistors wired as such, and with this lower slope resistance better voltage stabilisation will result.
connecting the drain and source leads together and using this connection as the diode cathode and the f.e.t. gate as the anode then such a diode is obtained. These anode and cathode connections should be reversed if using a p-channel f.e.t.

Several species of f.e.t. were tested and the reverse current in all cases was undetectable with the equipment to hand, whilst in the forward direction the f.e.t.s behaved as normal silicon diodes with conduction

Fig.3. Circuit for selecting the Zener voltage by varying the ratio of R1, R2.
beginning when biased by around 600 mV . This again is not the normal f.e.t. mode of operation and care should be taken that the f.e.t. is not overloaded, as the manufacturers have not designed the device with gate current in mind.

VARICAP DIODES

Diodes used in the reverse bias mode exhibit capacitance between the anode and cathode connection, the capacitance decreasing as the applied voltage is increased. Diodes used in this fashion are known as varicap diodes, and are specially made so that this characteristic is exhibited to a greater extent than in normal signal diodes.

Varicaps are commonly used in tuned circuits in the r.f. stages of TVs and car radios to enable then to be tuned electronically with no moving parts. Radio amateurs have for many years used cheap general purpose diodes in place of the more expensive varicap diodes, but it is unusual to use a transistor instead, even though it is simple to achieve results with them.

The test circuit of Fig. 5 was built and the frequency measured with different values of tuning capacitor to enable the stray capacitance to be calculated. The oscillator frequency was then set at precisely 6.0 MHz and the transistor under test was connected. The resulting oscillator frequency was measured at different tuning voltages to enable the capacitance swing to be calculated.

The results are shown in Table 3 for various types of transistor, the maximum frequency and minimum capacitance figures refer to a tuning voltage of 12 V , whilst the minimum frequency and maximum capacitance figures refer to zero tuning voltage.

Fig.4. The use of transistors as Zener diodes.

Whilst it is easy to tune an oscillator in this fashion, the use of tuning transistors in the signal circuits of radios may lead to disappointment as, although the transistor used has a large capacitance swing, it may have a low Q . Because of their relatively large leakage currents, germanium transistors will be worse in this respect than will silicon transistors.
Due to the need to keep the transistor "diodes" reverse biased, only pnp transistors have been used with this test circuit, although it would be possible to use npn types if the polarity of the tuning voltage rail were changed.

CONSTANT CURRENT SOURCES

Constant current sources, whilst not seen very often, are very useful field effect devices which over a large voltage range will keep the current through the device at a given value. Motorola have a range 1N5283 to 1N5314, which have preset currents between 0.22 mA and 4.70 mA (Ref.2), Siliconix have a similar range which has device numbers easier to understand, i.e. CR390 has a constant current of 3.9 mA and CR470 has a constant current of 4.7 mA . These devices may be easily made from f.e.t.s (field effect transistors) by connecting them as shown in Fig.6a.

Looking at $\mathrm{I}_{\text {dss }}$ in transistor characteristic tables gives some idea of the constant current that can be obtained, but this will only be approximate because the spread in characteristics of f.e.t.s is quite wide. For example, the 2 N 3823 is quoted with a figure between 4 mA and 20 mA , and the 2 N 4391 between 50 mA and 150 mA (Ref.1). We can, however, obtain any current value less than $\mathrm{I}_{\text {dss }}$ by inserting a resistor in the source lead of our chosen f.e.t., as in Fig.6b.
A sample of 2 N 3819 that was tested with no source resistor gave a constant current of 12 mA . When 100 ohms was inserted, the current was $9 \mathrm{~mA}, 7.5 \mathrm{~mA}$ with 200
ohms, and 6 mA with 300 ohms. A sample of 2 N 4391 with no resistor gave 55 mA , which dropped to $25 \mathrm{~mA}, 15 \mathrm{~mA}$, and 11 mA when used with 100,200 and 300 ohms respectively. The only things to bear in mind when using f.e.t.s as constant current sources is that the maximum permitted voltage across the device is around 30 V and the dissipated power should not exceed the device rating.

Fig.6. Constant current source using f.e.t.s.

SOLAR CELLS

Back in the dim distant past of transistors, their cases were constructed of glass, which was painted black on the outside to stop light affecting the innards. One of the common transistors then available, an OC71, a pnp germanium a.f. transistor, was also made in another version, OCP71, which in effect had a hole in the paint so that it could be used as a phototransistor.
What the manufacturers did not tell us, however, is that if all the black paint was scraped off an OC71, or any other glass transistor of similar construction, then it could be used as a photovoltaic cell to generate electricity. Brightly lit it will produce up to 160 mV when not driving a load, although this drops off sharply when a load is applied.
As an experiment, the author cut the top off a BC109 and the voltage in full sunlight was measured. An output of 400 mV was obtained when measured on a digital voltmeter. However, when loaded with a moving coil meter it gave no discernible output due to the high internal resistance of the very small

Fig.5. Test circuit for using transistors as varicap diodes.
junction area which was illuminated, the inside of a BC109 still being pretty lightproof even with its top cut off.

Metal cased power transistors such as the 2 N 3055 may also be used as solar cells if the top of the metal case is carefully sawn away. Output voltages around 0.7 V were obtained at currents up to about 15 mA by using one junction, and double this by using both junctions, i.e. by using the base of the transistor as one connection and the collector and emitter tied together as the other.

NEGATIVE RESISTANCE DEVICES

Tunnel diodes are rare but useful two terminal devices which exhibit a region of "negative resistance" over a small applied voltage range, enabling amplifiers and oscillators to be easily built. Silicon tunnel diodes show this effect when biased between 65 mV and 420 mV , gallium arsenide between 150 mV and 500 mV , and germanium from 55 mV to 320 mV (Ref.3). They were more popular in years gone past, though, and are now difficult to obtain

Fig.7. Using n and p-channel f.e.t.s in a lambda configuration to produce a "tunnel diode" effect oscillator circuit.

By using an n-channel f.e.t. in connection with a p-channel f.e.t. the same negative resistance effect may be obtained cheaply and simply, although in this case the applied bias is somewhat higher. This combination of two different types of f.e.t. is called a lambda circuit, one of which was constructed from a $2 \mathrm{~N} 3819 n$-channel f.e.t. and a 2 N 5460 p-channel f.e.t., connected to an old 10.7 MHz i.f. transformer, as shown in Fig.7.

The power supply voltage was varied and it was found that the circuit oscillated with bias voltages between 2.7 V and 6.5 V , although it was found impossible to measure these values precisely due to the circuit suddenly jumping from one current value to another as the supply voltage was increased. Nevertheless, the circuit oscillated well at the 10.7 MHz test frequency used. This really is a simple and easy little oscillator circuit and deserves to be more widely known.

CONNECTING IT ALL TOGETHER

Having explored a constant current source and a constant voltage source, the

References

1. Mullard Semiconductors Quick Reference Guide 1982.
2. Motorola Semiconductors Condensed Catalogue.
3. Semiconductors, Basic Theory and Devices, I. J. Kampel, Newnes-Butterworth.
two can now be connected together to form a low current stabilised power supply which may be used to supply the lambda circuit. The tuned circuit attached to the lambda circuit can be tuned by a pnp transistor taking the place of a varicap diode pair (Fig.8).

The total circuit for a simple oscillator circuit thus consists of five transistors, two resistors, a fixed capacitor and a tuned circuit. This may be reduced even further if the "varicap" part of the circuit is not required.

You may well be asking whether this unlikely looking circuit does actually work: after an initial 30 minutes wait for the circuit to achieve thermal equilibrium (during which time the frequency drifted by

Fig.9. Negative resistance oscillator output frequency.

Fig.8. Simple oscillator circuit using an npn transistor to tune the lambdabased circuit.

113 Hz), the oscillator output frequency was measured with different supply voltages. The results are shown in Fig.9, which shows that for best results the supply voltage should be kept within the range 6 V to 18 V , the output frequency varying by only 26 Hz between these voltage limits.

Varying the tuning voltage from zero to 10 V reduced the output frequency by 550 kHz . The circuit of this oscillator shows that transistor substitution is well worth doing as the component count is very small and the only component selection required is that the transistor acting as a Zener should have its "Zener" voltage within the negative resistance range of the lambda circuit, i.e. between 2.7 V and 6.5 V .

8

A COMPLETE RANGE OF INVERTERS

150W TO 2500W-12V \& 24V

A Complete range of regulated inverters to power 220 V and 240 V AC equipment via a car, lorry or boat battery. Due to their high performance ($>90 \%$) the inverters generate very little heat. The high stability of the output frequency ($+/-1 \%$) makes them equally suitable to power sensitive devices.

These inverters generate a modified sine wave, which are considerably superior to the square waves which are produced by most other inverters. Due to this superior feature they are capable of powering electrical equipment such as TV,s, videos, desktop \& notepad computers, microwave ovens, electrical lamps, pumps, battery chargers, etc.

Low Battery Alarm

The inverters give an audible warning signal when the battery voltage is lower than 10.5 V (21 V for the 24 V version). The inverter automatically shuts off when the battery voltage drops below $10 \mathrm{~V}(20 \mathrm{~V}$ for the 24 V version). Fuse protected input circuitry.

Order Code		Power	Voltage	Price	
651.581	150W	Continuous	12 V	£36.39	
651.578	150W	Continuous	24 V	£36.39	
651.582	300W	Continuous	12 V	£50.64	
651.583	600W	Continuous	12 V	£101.59	
651.593	600W	Continuous	24 V	£101.59	
651.587	1000W	Continuous	12 V	£177.18	
651.597	1000W	Continuous	24 V	£177.18	
651.602	1500W	Continuous	12 V	£314.52	
651.605 651.589	2500W	Continuous	24 V	£319.52	
651.599	2500W	Continuous	24V	£490.54	SIEATON-SHOWNIS 651.583 .600 W VERRSLON.

Many uses include:- * Fetes * Fairgrounds * Airshows * Picnics * Camping * Caravans * Boats *Carnivals * Field Research and * Amateur Radio field days * Powering Desktop \& Notepad Computers.

DELIVERY CHARGES ARE £6-00 PER ORDER. OFFICIAL ORDERS FROM SCHOOLS, COLLEGES, GOVT. BODIES, PLC,S ETC. PRICES ARE INCLUSIVE OF V.A.T. SALES COUNTER. VISA AND ACCESS ACCEPTED BY POST, PHONE OR FAX, OR EMAIL US AT SALES@BKELEC.COM ALTERNATIVELY SEND CHEQUE OR POSTAL ORDERS MADE PAYABLE TO BK ELECTRONICS.
For Full Specifications View our web site at:WWW.BKELEC.COM/INVERTERS.HTM

Constructional Projects PICAXE PROJECTS

MAX HORSEY

Part 2 - Temperature Sensor, Voltage Sensor, VU Indicator

Using the PICAXE system, you do not need specialised equipment or knowledge to program the PIC microcontrollers used in these designs.

LAST month we described three projects based on the PICAXE-18, a microcontroller based on the PIC16F627 device but which is programmed by using a version of BASIC via a serial link connected to your PC-compatible computer. The projects were an Egg Timer, Dice Machine and a Quiz Game Monitor and used the PICAXE's digital options. This month we describe three applications which employ this device's analogue inputs:

- Temperature Sensor
- Voltage Sensor
- VU Indicator

Details of obtaining the devices and their software are given later.

GENERAL CIRCUITRY

The general purpose circuit diagram for all nine designs in this three-part series, is repeated here from Part 1, in Fig.1. Each of the circuits to be described is a variant of that shown in this figure, and just the essential changes are shown as separate diagrams.

In the circuits to be described, pushbutton (push-to-make) switches S2, S3 and S5 are omitted, and pin RA0/AN0 (IC1 pin 17) is used as an analogue signal input. In other applications, pins RA1/AN1 and RA2/AN2 of the PICAXE-18 can also be used as analogue inputs.

With the BASIC dialect used by the PICAXE-18, the command readade 0,b0, is all that is required to configure RA0/AN0 as an input to read an analogue voltage. The zero (0) in this case refers to RAO/AN0, to read from another analogue

Fig.1. General circuit diagram for all the designs in this PICAXE series of projects.
pin, the number of that input would be substituted for it. For example, to read from RA1/AN1, the command would be readadc $\mathbf{1 , b 0}$. The variable $\mathbf{b 0}$ is that into which the analogue value is placed.

The PIC16F627 itself (i.e. not the PICAXE-18) offers low-resolution analogue readings ranging from 0 to 255 as the voltage at the analogue pin rises from 0 V to 5 V . However, the PICAXE-18 version of the PIC16F627 can only return values from 0 to 160 in 16 discrete steps. Hence, on a 5 V supply, only voltages from 0 V to $3 \cdot 3 \mathrm{~V}$ can be measured; voltages between 3.3 V and 5 V will all return a value of 160 .

The projects may be powered by batteries (e.g. $3 \times \mathrm{AA}$ size cells, although the option to use a 12 V battery is described), or by a 5 V mains adaptor. Note that the latter must be a regulated type since non-regulated adaptors often produce much higher voltages than expected.

TEMPERATURE SENSOR - FISH TANK MONITOR

In the Temperature Sensor - Fish Tank Monitor design, apart from switches S2, S3 and S5 having been omitted, switch S4 now becomes a toggle switch. Its role will be discussed shortly. Resistor R14 is replaced by a negative temperature coefficient (n.t.c.) thermistor having a value of

Fig.2. Two possible minor changes to allow temperature sensing.

Line-up of this month's three demonstration modules: Temperature Sensor Fish Tank Monitor - VU Indicator - Volume Level Display • Voltage Sensor Battery Tester.
about five kilohms ($5 \mathrm{k} \Omega$) at room temperature, see Fig.2a.
As the temperature increases, the resistance of the thermistor falls, causing the voltage at pin RA0/AN0 of the PICAXE18 to fall, and so causing the value of the resulting analogue reading to fall as well.
Switch S3 is replaced by a $12 \mathrm{k} \Omega$ resistor, R17. The value was chosen so that temperatures from a little below to some way above "normal" room temperature can be indicated. If preferred, R17 could be changed to a potentiometer (VR1) used as a variable resistor. A value of, say, $47 \mathrm{k} \Omega$ would allow a wider range of temperatures to be accommodated. This change is shown in Fig.2b.

L.E.D. DOT/BAR MODE

In the context of the l.e.d.s (light emitting diodes) used in this series, Dot Mode means that only a single l.e.d. lights at any one time. Bar Mode is when two or more 1.e.d.s in a chained sequence light up,
forming a bar effect. This is the most common form of display but the program includes both modes of operation, selected by using toggle switch S4 (if used).

If S4 is omitted, the display will always be in Dot Mode (do not omit resistor R15, though). If you wish to set the circuit permanently to Bar Mode, fit a wire link in place of S4 so that pin 16 (RA7) is always held at logic 1 (high), in which case R15 can be omitted, although it can be retained if preferred.

As was done in the Egg Timer last month, 1.e.d. D8 could be replaced by a buzzer (WD1), with the value of resistor R12 being changed to 12Ω. In this case potentiometer VR1 could be set so that the circuit provides an audible warning if the temperature rises above a certain level.

If a small buzzer (low current) is used, it may be driven directly from the designated PICAXE-18 output in addition to the l.e.d. Furthermore, if the circuit is set to Dot Mode, then separate buzzers could be

LISTING 1

'temperature sensor 'tem3'
'use 5 k thermistor in place of resistor and 12 k resistor or 47 k variable in place of switch
'for Dot Mode make in7 low, for Bar Mode make in7 high
start: readadc $0, \mathrm{~b} 0$
'put the analogue value at pin0 into b0
if $\mathrm{b} 0>75$ then one
if $\mathrm{b} 0>64$ then two
if $b 0>53$ then three
if $\mathrm{b} 0>43$ then four if $b 0>32$ then five if $\mathrm{b} 0>21$ then six if $b 0>11$ then seven
let pins=\% 10000000
'if b0 is less than 12 , then make output 7 high (Dot Mode)
if pin7 $=0$ then start \quad 'if input pin 7 is low, goto start let pins=\%11111111 'if input pin 7 is high, make all outputs high (Bar Mode)
goto start
one: let pins=\%00000001
goto start
two: let pins $=\% 00000010$ 'make output 1 high (Dot

Mode)
'make output 0 high (dot or Bar Mode)
if pin7 $=0$ then start
let pins=\%00000011
goto start
three: let pins=\%00000100 if pin7 $=0$ then start let pins=\%00000111 goto start
four: let pins=\%00001000 if pin7 $=0$ then start let pins=\%00001111 goto start
five: let pins=\%00010000 if pin7 $=0$ then start let pins=\%00011111 goto start
six: let pins=\%00100000 if pin7 $=0$ then start let pins=\%00111111 goto start
seven: let pins=\%01000000 if pin7 $=0$ then start let pins=\%011111111 goto start
'make output 0 \& 1 high (Bar Mode)

Fig.3. Adding diodes to selected IC1 outputs, such as RB2 and RB5, enables a single buzzer to be driven from several sources.
connected to any two outputs to provide over- and under-temperature warnings. Hence it would be possible to monitor the temperature of a fish tank, for example.

Another approach would be to add diodes to selected outputs so that a single buzzer could be used, but driven from several sources. An example is shown in Fig.3, in which outputs RB2 and RB5 are coupled via diodes D9 and D10 to jointly feed to the buzzer WD1. Resistors R7 and R10, and 1.e.d.s D3 and D6 can be retained.

Note that the voltage change caused when a thermistor is employed is not linear. Hence it would be difficult to achieve accurate calibration over a wide range of temperatures. However, it is still possible to set two "safe" points as required for the fish tank monitor
either by selecting the appropriate outputs, or by changing the program.

TEMPERATURE PROGRAM

The BASIC source code for the Temperature Sensor program is shown in Listing 1. Comments following an apostrophe are ignored by the compiler. The line at the label Start: states readade 0,b0. This command causes the PICAXE-18 to read the voltage at input RA0/AN0 and place the value in variable b0.

The next set of lines examine this value and jump to the appropriate command routine to turn on specific 1.e.d.s. For example, outputting the command let pins $=$ \% $\mathbf{1 0 0 0 0 0 0 0}$ causes l.e.d. D8 to turn on. A " 1 " in any position will make the appropriate output go high.

The percentage sign tells the compiler that the number is in binary. The equivalent decimal number is 128 and so you could in fact replace the line with let pins $=\mathbf{1 2 8}$. However, the binary representation provides a better indication of which l.e.d.s are affected. Note that in the absence of a percentage sign, the compiler will assume that a decimal number is to be processed. Remember that binary codes are numbered from right to left, in order

Completed Temperature Sensor module. Note the thermistor mounted in a discarded ballpoint pen barrel.

VOLTAGE SENSOR - BATTERY TESTER

A voltage sensing interface is illustrated in Fig.4. Extra care is required when connecting external voltages to the circuit. It is important, for example, to prevent the

Fig.4. Circuit modification to give a voltage sensing interface. Adjusting VR1 will give a monitoring range of OV to 8 V d.c. on the eight l.e.d.s.

Fig.5. Adding a simple regulator circuit to give more accurate voltage detection.

voltage at the RA0/AN0 analogue input from rising above 5 V d.c., or falling below 0 V .

In fact, for the reasons mentioned earlier, the highest voltage which can be measured is 3.3 V . So the input voltage is attenuated by resistor R17 and potentiometer VR1. By adjusting VR1, voltages from 0 V to 8 V can be monitored and displayed on the eight l.e.d.s. A wider range is possible, although 0 V to 12 V , say, is more difficult to display on eight l.e.d.s! However, you could reduce the range to say 5 V to 12 V by changing the program.
If accurate voltage detection is required then the circuit should be driven from a reliable voltage supply, such as provided via a 5 V regulator. Since only two additional components are required, as shown in Fig.5, i.e. +5 V regulator IC2 and capacitor C2, it is worth adding this facility.

PROGRAM

The program is similar to the temperature display except that higher analogue values cause more 1.e.d.s to be displayed. Provision for Bar Mode or Dot Mode has been included. Note that the commands high 0, high 1, high 2 etc. have been used instead of let pins $=\mathbf{x}$.

When only a single l.e.d. is required - as in Dot Mode - this method of switching an output high is more economical with memory space - something quite critical with PICAXE devices.
of bit 0 to bit 7, with bit 0 controlling 1.e.d. D1.

The program continually checks whether input RA7 is high or low, to determine whether to display in Bar Mode or Dot Mode. So the command line if pin7 =0 then start causes the compiler to skip the Bar Mode display command, and so display in Dot Mode.

876

> Completed prototype Voltage Sensor (Battery Tester). The I.e.d.s shown here are made up of three red (low), two yellow and three green lights.

The circuit diagram in Fig. 6 shows the changes needed to produce a VU (Volume Units) Indicator circuit. This is ideally suited to sound level monitoring by connecting the circuit to the speaker or headphone output of an amplifier. The 1.e.d.s indicate a relative volume level.

The circuit type is known as a "diode pump". Capacitor C3 a.c. couples the analogue signal to the circuit, preventing any d.c. current flow between the two circuits. Diode D9 only allows positive going aspects of the signal to pass, and diode D10 prevents the output from C3 going below about 0.7 V . The effect is that the output from D10 is effectively twice the value of the basic positive-going waveform from the amplifier (less the voltage drops across the diodes).

The output from diode D9 causes capacitor C 4 to charge up to a level representing the output level from the amplifier. This voltage is then monitored in the same way as before. It is essential that resistor R17 should be retained to minimise the risk of damage to the PICAXE chip in the event of the signal voltage rising too high. Its value may be reduced from the $15 \mathrm{k} \Omega$ shown, but it is best not to reduce it below about $1 \mathrm{k} \Omega$ for fear of PICAXE damage.
It is worth noting that you should NOT connect the circuit in Fig. 4 direct to the amplifier output since this is likely to contain neg-ative-going waveforms, which if received by the PICAXE chip could cause irreparable damage if the condition is sustained, even though the device has a certain amount of internal voltage and current limiting.
The value of capacitor C3 is not critical, and smaller values will tend to limit bass frequencies - a little experimentation may be helpful.

Fig.7. Optional two-transistor microphone amplifier circuit diagram for monitoring microphone outputs.

MICROPHONE INPUT

You may wish to experiment with monitoring the output from a microphone. As the output from a microphone is much lower than required for the circuit to respond adequately, some amplification is necessary. Simple microphone amplifiers can be easily made around op.amps such as the type 741 and various designs have been published.
A very simple but extremely effective amplifier, though, can be made based on two transistors, such as types BC108C or BC184L and a suitable arrangement is shown in Fig.7. In fact, any pair of npn transistors with gains of 250 to 400 should work, though you may need to experiment with the resistor values a little for best results.
The capacitor values are not critical and any value between 100 nF and $1 \mu \mathrm{~F}$ will work well. The capacitors should be nonpolarised and electrolytic types are best avoided.
Note that the circuit is intended for use with an electret microphone (MIC1). These inexpensive devices are very small and provide excellent results. Resistor R18 provides power for the microphone. If you wish to try a dynamic microphone instead of an electret, then omit R18. In tests, cheap loudspeakers and headphones also provided good results when used as microphones and with R18 omitted.

Fig.6. Adding a "diode pump" circuit to produce a simple VU Indicator.

COMPONENTS

Resistors

R1 10k

R2, R4, R13, R15, R16 22k (5 off)
R3 4k7
R5 to R11 330Ω (7 off)
See

R12 $\quad 12 \Omega$ or 330Ω (see text)
R14 5k n.t.c. thermistor (see text)
R17 15k (see text)
R18, R20,
R22 10k (3 off) (see text)
R19, R21 680k (2 off) (see text)
All 0.25W 5\% carbon film, except R14.

Potentiometer

VR1 4 k 7 or 47 k rotary carbon, panel mounting, linear (see text)

Capacitor

C1	470μ, radial elect. 16V
C2	100 n ceramic or polyester layer (see text)
C3	100 n to 1μ ceramic or polyester layer (see text)
C4	1μ radial elect. 16V (see text)
C5, C6	100 n ceramic or polyester layer (2 off) (see text)

Semiconductors

D1 to D8 red I.e.d. (or other colours - see text) and mounting clips (8 off)
D9, D10 1 N 4001 rectifier diode (see text) (2 off)
TR1, TR2 BC184L or BC108C (2 off) (see text)
IC1 PICAXE-18 microcontroller (see text)
IC2 $\quad 78 \mathrm{~L} 05+5 \mathrm{~V}$ voltage regulator (see text)
Miscellaneous

B1	4.5 V battery (3 x AA) and clip (see text) min. s.p. push-to-make switch (not used - see text)		
S1 to S5		\quad	min. s.p.s.t. toggle switch
:---			

TP1, TP2 (see text)
WD1 active buzzer, 5V
MIC1 electret microphone insert (see text)
Printed circuit board, available from the EPE PCB Service, code 373 (one for each design - see text); 18-pin i.c. socket (one for each p.c.b.); plastic case $140 \mathrm{~mm} \times 80 \mathrm{~mm} \times 30 \mathrm{~mm}$ approx (one per p.c.b.); p.c.b. supports (4 off per p.c.b.); knob for VR1 (see text); stripboard, 18 holes x 10 strips (see text); stripboard, 9 holes x 3 strips (see text); 1 mm terminal pins; connecting wires; solder, etc.

PROGRAM

The program is similar to that for the Voltage Sensor, except that a For-Next loop is used to sample the analogue value 20 times, taking a peak value as it loops.

This provides a more stable display. There is no provision for Dot Mode display, although this could be added to the program if desired.

CONSTRUCTION

- GENERAL NOTES

Each project is built on the same printed circuit board (p.c.b.) that was presented in Part 1 of the series last month, shown there as Fig.2. This board is available from the EPE PCB Service, code 373. The individual component positioning and wiring details for the projects discussed here in Part 2 are shown separately.

Check the component list for the particular project being constructed, and fit only the required parts. Note that resistors R1 and R2, and connector TB1 are only required if you intend to program the PICAXE in-circuit. Serial connector TB1 must be inserted the correct way round, with the plastic tongue nearer the line of l.e.d.s, as shown in the p.c.b. layouts. Electrolytic capacitor C1 must also be fitted the correct way round.

The l.e.d.s have a common cathode (k) and so only one wire is required for all the cathodes, as shown in their component layout diagrams. The l.e.d.s should be fitted into the drilled case before connecting wires to them.

As discussed in Part 1, solder pins TP1 and TP2 are not essential, but may be useful if the PIC crashes. Shorting the two pins together causes the PICAXE program to restart from the beginning. Switching off the power supply should

TEMPGRATURI SENSOR - FEH TANK MONITOR

Fig.8. Multiboard component layout and wiring for the Temperature Sensor. As it stands, with switch S4 omitted, this arrangement will give Dot Mode (single l.e.d.) display.
defeat a crash, but on rare occasions with the PICAXE-18 it is useful to be able to reset the system directly.
When assembly has been completed and thoroughly checked, insert the PICAXE-18

General layout of components inside the prototype Temperature Sensor case. A power input socket is mounted on the case bottom and a jack socket for the thermistor on one side panel.
chip and program it from the PC using the serial link. Part 1 discussed the programming of PICAXE-18 devices and how PIC16F627 devices could be used instead of them, and readers are referred to that for more information. Pre-programmed PICAXE-18s are available as stated in this month's Shoptalk, which also gives information on obtaining the software itself.

TEMPERATURE

SENSOR

The diagram in Fig. 8 shows the component layout for the Temperature Sensor based on Fig. 2 and Fig.3, for monitoring both high and low temperatures. Since the circuit must always work in Dot Mode, switch S4 is omitted. Potentiometer VR1 has been included, since adjustments are almost certainly required.

Diodes D9 and D10 are connected to the ends of resistors R7 and R10 respectively, either on the component side, or on the copper side of the p.c.b.

If the project is to be used to check air temperature, the thermistor (R14) could be mounted at the end of a pair of leads. Single-core screened cable provides a neat solution.

If the thermistor is to be placed in water then it must be suitably housed to prevent water, as in a fish tank, touching its leads. For example, a glass tube could be employed, or the plastic case of an old ballpoint pen take care to block any air holes. A suitable filler or glue may be used to retain and seal the thermistor.

VOLTAGE SENSOR

The component layout details for the Voltage Sensor are shown in Fig.9.
As stated earlier, the display will vary with the supply voltage as well as the voltage being sensed, hence for accurate readings a voltage regulator should be employed here.

If a voltage regulator circuit, such as discussed earlier (Fig.5) is to be used, it can be constructed on a small piece of stripboard, as shown in Fig. 10.

Capacitor C 2 is fitted to the multiboard p.c.b. in the position occupied by C 1 in the previous circuits. Ensure that C1 and IC2 are fitted the correct way round.

Fig. 10.
Stripboard voltage regulator (see text).

Note that the circuit will only function correctly if the battery voltage is above about +7 V . If it falls below this level, the output from the regulator will fall below 5 V and the l.e.d.s may start flashing randomly!

VU INDICATOR

The VU Indicator component layout details are shown in Fig.11. Diode D10 and resistor R17 are soldered directly onto the potentiometer VR1 tabs as indicated, and C3 is soldered to the junction between the diodes and then connected to the sound source using any technique suited to it, e.g. via a jack socket perhaps.

Fig.9. Component layout and wiring for the Voltage Sensor.

Ensure that the diodes are fitted the correct way round.
The potentiometer VR1 provides a firm support since it is fastened to the case. Capacitor C3 should be non-electrolytic

IU INDIGATOR - VOLUME LEVEL DISPLAY

Fig. 12 (right). Stripboard component and interwiring details for the two-transistor microphone amplifier circuit (Fig.7).
(e.g. ceramic disc or polyester layer) and may be fitted either way round.

MICROPHONE AMPLIFIER

The two-transistor microphone amplifier circuit is constructed on stripboard as shown in Fig.12. Remember to omit R18 if a dynamic microphone is employed instead of the electret type suggested. Assuming that an electret type is used, you will need to check its polarity when connecting it to the stripboard.

The transistor pin connections shown are for type BC184L, the top view pinouts for a BC108C/BC109C type transistor are shown separately in Fig.12. Ensure that the correct pinouts are used.

The leads of capacitor C6 must be spread out slightly to fit the tracks as shown.

Component positioning inside the two halves of the Voltage Sensor case.

CASING

As with last month's projects, all three described here were mounted in plastic cases, measuring approximately $140 \mathrm{~mm} \times$ $80 \mathrm{~mm} \times 30 \mathrm{~mm}$, and drilled as required and shown in the photographs.
Begin by marking and drilling the holes required for the l.e.d.s. Additional holes are required for the thermistor, optional volt-age-monitoring and sound inputs, and an external power source, as appropriate.

Each project has an optional potentiometer (VR1), and if this is required a suitable hole must be made for its mounting bush. The p.c.b. should be secured using p.c.b. supports, of which self-adhesive types are suggested.

PROGRAMMING AND TESTING

As discussed last month, there are two ways of obtaining a programmed

Completed VU Indicator unit showing the general layout of components inside the case. The miniature electret microphone is mounted just above the control potentiometer.

For general information on programming PICAXE devices and checking their in-circuit behaviour, refer to Part 1, last month.

RESOURCES

Preprogrammed HEX versions of the PICs for these designs can be obtained (mail order only) from: M. P. Horsey, Electronics Dept., Radley College,噱 Abingdon, Oxon. OX14 2HR. The price is $£ 5.90$ per PIC, including postage (overseas add $£ 1 \mathrm{p} \& p$). Specify the project for which the PIC is required. Enclose a cheque payable to Radley College.

Software for these three designs and for Parts 1 and 3 of the series, (except the PICAXE programming software) is available on 3.5 in disk (EPE Disk 5), for which a nominal handling charge applies, from the Editorial office (see the PCB Service page). It is also available for free download from the EPE ftp site.

PICAXE programming software can be obtained from: Tech-Supplies, Dept. EPE, 4 Old Dairy Business Centre, Melcombe Road, Bath, BS2 3LR.

The telephone number of Revolution Education is: 01225 340563, and their web site is at: www.rev-ed.co.uk.

Next month: In the third and final part of this series three Chaser Lights circuits are presented.

INTERङACE Robert Penfold

SOME NOTES ON CHOOSING AND USING VISUAL BASIC

PRobably the most asked question from readers about Visual BASIC is which version should be used when producing software for PC projects. Sometimes the reader asking the question has an old version of Visual BASIC and doubts its suitability for this application. Other enquiries are from people wishing to buy Visual BASIC, and needing guidance as to the best version.

Golden Oldies

If you have access to an old version of Visual BASIC it will probably be perfectly all right for producing software for PC add-ons. The author has only used Visual BASIC 5 and 6 for producing this type software, but one or two readers seem to have had some success using version 4

Properties windows to the right of this. The Toolbox runs down the left-hand section of the screen and this is somewhat different to the simple group of icons in earlier versions. However, the usual components are there, such as labels, scrollbars, and buttons.
Although the menu and toolbars in the top section of the screen do not look radically different to their predecessors, there are some major differences. In particular, the menu system has been completely redesigned and it can take a while to find the required options.
It is still fairly easy to add components on the form, write the code, and test the program. Components that will not appear when the program is run are no longer added to the form. Instead, double clicking on the component in the toolbox results in it appearing in a box at the bottom of the screen.

In the example of Fig. 2 a timer component has been added and its icon can be seen in the box. This is a more logical way of doing things, and avoids having to find space on the form for non-displaying components. Double clicking on the component's icon brings up its section of the Code window in the usual way.

Ins and Outs

Writing a program for your PC add-ons is one thing, but getting the program to communicate with the add-ons is quite another. Microsoft's Net programming languages are designed for operation with Windows XP, which slightly complicates matters.

The Price is Right

There are three normal commercial versions of Visual BASIC, which are the Standard, Professional, and Enterprise varieties. There are additionally the free versions that have been well covered in previous Interface articles. The big limitation of these free versions is that it is impossible to compile programs into standalone applications.
There is also an Educational version of Visual BASIC, but this seems to be much the same as the Professional version apart from the license conditions. As one would expect, commercial distribution of programs produced using the Educational version is not permitted.

Visual BASIC Standard is the simplest version, but it lacks some of the extras in the more up-market offerings. In particular, it does not include the MSCOMM ActiveX control that can be used for interfacing via the serial ports. It is fundamentally the same as the Professional version though. However, the license conditions are more restrictive, which could be a problem for anyone intending to commercially distribute their Visual BASIC programs.

The Professional version includes extras such as MSCOMM, plus others that make it easier to produce software for commercial distribution. The license conditions permit virtually unrestricted distribution of programs produced using Visual BASIC Professional.

The Enterprise edition is aimed at groups of programmers who need to produce large programs, and as one would probably expect, it is an extremely expensive piece of software. In fact, it is far too expensive to consider unless you really need its facilities.

Unless you really need the facilities of MSCOMM and more flexible license conditions, the Standard version is the obvious choice. At only about one quarter of the cost of the Visual BASIC Professional it will work quite happily with INPOUT32.DLL, etc. and will give access to the port addresses. If you really do need MSCOMM or a license for full commercial distribution it is necessary to opt for the Professional version.

Fig.1. Visual BASIC Net can have the traditional screen layout.

Anything prior to Visual BASIC 4 is unlikely to be suitable for the present purpose, but these early versions are now many years old and with the best will in the world have to be regarded as obsolete. Most software for PC hardware projects uses fairly simple components such as labels, timers, and buttons, and does not require the latest high-power features.
Visual BASIC 6 has now been superseded by Visual BASIC NET, and there seems to be some major changes in the new version. It is possible to opt for the same screen layout as Visual BASIC 6, and this gives something like that shown in Fig.1.

There is the usual area for forms in the middle section of the screen with the Project and form rather than on the form.

Fig.2. The timer component appears in the box beneath the

First, a fairly modern and upmarket PC is needed in order run Windows XP well. Second, Windows XP does not permit direct control of the computer's ports. Ways around this have been covered in $E P E$ in the recent past.
With Visual BASIC 6 Professional or Enterprise it is possible to use the MSCOMM ActiveX control to gain access to the serial ports. Some research on the Internet suggests that this component is also included with the Professional and Enterprise versions of Visual BASIC Net.
Unfortunately, it was absent on the borrowed system being used, which was running Visual Studio Net. This is Visual BASIC, Visual C++, and Visual C\# bundled together. Trying to add this component to the Toolbox was eventually successful. However, trying to use it in a project produced an error message to the effect that the user did not have a license to use that control, which is not actually correct.
The third-party alternatives to MSCOMM should be more successful, and it should be possible to use any version of Visual BASIC Net to communicate with the PC's ports. If you are only interested in writing programs for PC add-ons there would seem to be little point in upgrading from Visual BASIC 5 or 6 .
slightly different using Visual BASIC Net. Choose the Customise Toolbox option from the Tools menu, which will produce the usual list of available components. This should include NETCOMM, and it must be selected by ticking its checkbox (see Fig.3).
After left-clicking the OK button to return to the main screen, NETCOMM should be included in the list of
lines of code for the form and the button respectively:

AxNETComm1.PortOpen = True AxNETComm1.set_Output("Hello")

The first line simply opens the default serial port for communications when the form is loaded, and this happens automatically when the program is

Fig. 4 (right). NETCOMM has been added to the form, but it will not be displayed when program is run.

launched. The second line outputs the text string in parentheses to the default serial port, which will be COM1 unless a different port is specified. Obviously any test string can be used here. The test program loaded and ran correctly using Visual BASIC Net and Windows XP (see Fig.5), so NETCOMM obviously accesses the serial ports via the approved channels.

Fig.5. The test program runs successfully under Windows XP.
If you have any version of Visual BASIC that lacks MSCOMM it is certainly worthwhile obtaining and trying this alternative. The Internet is not exactly awash with information about programming the ports of a PC, but there are numerous snippets of information available if you seek them out using a good search engine such as Google.

STORE YOUR BACK ISSUES ON MINI CD-ROMS

A great way to buy EPE Back Issues - our mini CD-ROMs contain back issues from our EPE Online website plus bonus articles, all the relevant PIC software and web links. Note: no free gifts are included. All this for just £14.45 each including postage and packing.

VOL 1 CONTENTS

BACK ISSUES - November 1998 to June 1999 (all the projects, features, news, IUs etc. from all eight issues). Note: No advertisements are included. PIC PROJECT CODES - All the available codes for the PIC based projects published in these issues.

VOL 2 CONTENTS

BACK ISSUES - July 1999 to December 1999 (all the projects, features, news, IUs, etc. from all six issues). Note: No advertisements are included. PIC PROJECT CODES - All the available codes for the PIC-based projects published in these issues.

VOL 3 CONTENTS

BACK ISSUES - January 2000 to June 2000 (all the projects, features, news, IUs, etc. from all six issues). PIC PROJECT CODES - All the available codes for the PIC-based projects published in these issues

VOL 4 CONTENTS

BACK ISSUES - July 2000 to Dec. 2000 (all the projects, features, news, IUs etc. from all six issues). PROJECT CODES - All the available codes for the programmable projects in these issues.

VOL 5 CONTENTS

BACK ISSUES - January 2001 to June 2001 (all the projects, features, news, IUs etc. from all six issues). PROJECT CODES - All the available codes for the programmable projects in these issues, including those for Interface.

VOL 6 CONTENTS

BACK ISSUES - July 2001 to December 2001 (all the projects, features, news, IUs etc. from all six issues). PROJECT CODES - All the available codes for the programmable projects in these issues, including those for Interface.

VOL 7 CONTENTS

BACK ISSUES - Jan 2001 to June 2001 (all the projects, features, news, IUs etc. from all six issues). PROJECT CODES - All the available codes for the programmable projects in these issues, including those for Interface.

EXTRA ARTICLES - ON ALL VOLUMES

BASIC SOLDERING GUIDE - Alan Winstanley's internationally acclaimed fully illustrated guide. UNDERSTANDING PASSIVE COMPONENTS - Introduction to the basic principles of passive components. HOW TO USE INTELLIGENT L.C.Ds, By Julyan Ilett - An utterly practical guide to interfacing and programming intelligent liquid crystal display modules. PhyzzyB COMPUTERS BONUS ARTICLE 1 - Signed and Unsigned Binary Numbers. By Clive "Max" Maxfield and Alvin Brown. PhyzzyB COMPUTERS BONUS ARTICLE 2 - Creating an Event Counter. By Clive "Max" Maxfield and Alvin Brown. INTERGRAPH COMPUTER SYSTEMS 3D GRAPHICS - A chapter from Intergraph's book that explains computer graphics technology in an interesting and understandable way with full colour graphics.
EXTRA ARTICLE ON VOL 1 \& 2. THE LIFE \& WORKS OF KONRAD ZUSE - a brilliant pioneer in the evolution of computers. A bonus article on his life and work written by his eldest son, including many previously unpublished photographs.

NOTE: These mini CD-ROMs are suitable for use on any PC with a CD-ROM drive. They require Adobe Acrobat Reader (available free from the Internet -
www.adobe.com/acrobat)

Order on-line from

www.epemag.wimborne.co.uk/shopdoor.htm or www.epemag.com (USA \$ prices) or by phone, Fax, E-mail or Post
BACK ISSUES MINI CD-ROM ORDER FORM

We can supply back issues of $E P E$ by post, most issues from the past three years are available. An EPE index for the last five years is also available from www.epemag.wimborne.co.uk or see order form below. Alternatively, indexes are published in the December issue for that year. Where we are unable to provide a back issue a photocopy of any one article (or one part of a series) can be purchased for the same price. Issues from Nov. 98 are available on CDROM - see next page - and issues from the last six months are also available to download from www.epemag.com.

DID YOU MISS THESE?

AUG '01

PROJECTS • Digitimer • Lead-Acid Battery Charger - Compact Shortwave Loop Aerial Perpetual Projects 2 - L.E.D. Flasher - Double Door-Buzzer.
FEATURES • Controlling Power Generation Ingenuity Unlimited • Interface - Circuit Surgery - New Technology Update - Net Work.

SEPT ${ }^{01}$

Photocopies only
PROJECTS • Water Monitor • L.E.D. Super Torches • Synchronous Clock Driver • Perpetua Projects 3 - Loop Burglar Alarm - Touch-Switch Door-Light - Solar-Powered Rain Alarm
FEATURES - Controlling Flight • Ingenuity Unlimited • Practically Speaking • Circuit Surgery - New Technology Update - Net Work - The Internet Page.

OCT '01
 Photocopies only

PROJECTS • PIC Toolkit Mk3 • Camcorder Power Supply • 2-Valve SW Receiver • Perpetual Projects 4 - Gate Sentinel - Bird Scarer - In-Out Register. FEATURES • Traffic Control • Ingenuity Unlimited - New Technology Update • Circuit Surgery • - New Technology Update © Circuit Surgery \bullet 2 CD-ROMs - Microchip 2001 Tech Library

NOV '01

PROJECTS • Capacitance Meter • Pitch Switch • Lights Needed Alert • Teach-In 2002 Power Supply Lights Needed Alert • Teach-In 2002 Power Supply.
FEATURES • Teach-In 2002 - Part $1 \bullet$ Practically FEATURES • Teach-In 2002 - Part 1 • Practically Speaking • Circuit Surgery • New Technology Update • Ingenuity Unlimited • Net Work - The Internet Page • Free 16-page Supplement - PIC Toolkit TK3 For Windows.

DEC 01

PROJECTS • Ghost Buster • PIC Polywhatsit • Twinkling Lights • Mains Failure Alarm.
FEATURES • Teach-In 2002 - Part 2 • Marconi The Father of Radio - Interface - Ingenuity Unlimited - Circuit Surgery • New Technology Update - Net Work - The Internet Page - 2001 Annual Index.

JAN '02

PROJECTS • PIC Magick Musick • Time Delay Touch Switch - Versatile Bench Power Supply Forever Flasher.
FEATURES • Teach-In 2002 - Part 3 • Practically Speaking • Ingenuity Unlimited • New Technology Update •Circuit Surgery • Net Work - The Internet Page.

FEB '02

PROJECTS • PIC Spectrum Analyser • Guitar Practice Amp - HT Power Supply - Versatile Current Monitor.
FEATURES • Teach-In 2002 - Part 4 • Ingenuity Unlimited - Russian Space Shuttle Revisited Circuit Surgery - Interface - New Technology Update • Net Work - The Internet Page.

MAR' 02

PROJECTS - MK484 Shortwave Radio - PIC Virus Zapper RH Meter - PIC Mini-Enigma. Virus Zapper • RH Meter • PIC Mini-Enigma.
FEATURES • Teach-In 2002 - Part 5 • Ingenuit FEATURES • Teach-In 2002 - Part $5 \bullet$ Ingenuity
Unlimited \bullet Programming PIC Interrupts-1 \bullet Circuit Unlimited • Programming PIC Interrupts-1 \bullet Circuit
Surgery \bullet Practically Speaking \bullet New Technology Surgery • Practically Speaking • New Technology
Update \bullet Net Work - The Internet Page.

APR '02

PROJECTS • Electric Guitar Tuner • PIC Controlled Intruder Alarm - Solar Charge and Go - Manual Stepper Motor Controller

FEATURES - Teach-In 2002 - Part 6 - Interface

- Programming PIC Interrupts-2 - Circuit Surgery - Ingenuity Unlimited - New Technology Update - Net Work - The Internet Page - FREE Giant Op.Amp Data Chart

MAY '02

PROJECTS • PIC Big-Digit Display • Simple Audio Circuits - $1 \bullet$ Freezer Alarm - Washing Ready Indicator.
FEATURES • Teach-In 2002 - Part 7 • Ingenuity Unlimited • Practically Speaking • New Technology Update • Circuit Surgery \bullet Net Work - The Internet Page.

JUNE '02

PROJECTS • Biopic Heartbeat Monitor • Frequency Standard Generator - Simple Audio Circuits - $2 \cdot$ World Lamp.
FEATURES • Teach-In 2002 - Part 8 - Interface New Technology Update - Circuit Surgery Ingenuity Unlimited - Net Work - The Internet Page.

JULY '02

PROJECTS • EPE StyloPIC • Infra-Red Autoswitch • Simple Audio Circuits - $3 \bullet$ Rotary Combination Lock.
FEATURES • Teach-In 2002 - Part 9 - Practically Speaking - Using The PIC's PCLATH Command - Ingenuity Unlimited - Circuit Surgery • New Technology Update • Net Work-The Internet Page.

AUG '02

PROJECTS • PIC World Clock • Pickpocket Alarm - Big-Ears Buggy • Simple Audio Circuits - 4. FEATURES - Teach-In 2002 - Part 10 - Using Square Roots with PICs - Ingenuity Unlimited Evolutionary Electronics - Interface - Circuit Surgery \bullet Net Work - The Internet Page.

SEPT '02

PROJECTS • Freebird Glider Control • Portable Telephone Tester - EPE Morse Code Reader Vinyl to CD Preamplifier.
FEATURES • Circuit Surgery • New Technology Update - Practically Speaking - Net Work Flowcode for PICmicro - Logic Gate Inverter Oscillators • Net Work - The Internet Page.

OCT '02

Photocopies only
PROJECTS • EPE Bounty Treasure Hunter • IC Tester • Headset Communicator - PIC-Pocket Battleships.
FEATURES • Circuit Surgery - New Technology Update - Logic Gate Inverter Oscillators - 2 • Interface • Network - The Internet Page • Using TK3 With Windows XP and 2000.

NOV '02

PROJECTS • EPE Hybrid Computer - $1 \bullet$ Tuning Fork and Metronome - Transient Tracker \bullet PICAXE Projects-1 (Egg Timer - Dice Machine - Quiz Game Monitor).
FEATURES • Practically Speaking • Ingenuity Unlimited - Circuit Surgery - New Technology Update • Net Work - The Internet Page.

BACK ISSUES ONLY £3.50 each inc. UK p\&p.

Overseas prices $£ 4$ each surface mail, $£ 5.50$ each airmail.
We can also supply issues from earlier years: 1998 (except Jan. to May, July, Nov., Dec.), 1999 (except Dec.), 2000 (except Feb.), 2001 (except May, Sept., Oct.). Where we do not have an issue a photocopy of any one article or one part of a series can be provided at the same price.

ORDER FORM - BACK ISSUES - PHOTOCOPIES- INDEXES

\square Send back issues dated

\square Send photocopies of (article title and issue date)
\square Send copies of last five years indexes ($£ 3.50$ for five inc. p\&p - Overseas $£ 4$ surface, $£ 5.50$ airmail)
Name
Address
. Tel:
\square I enclose cheque/P.O./bank draft to the value of ε
\square Please charge my Visa/Mastercard/Amex/Diners Club/Switch £ Switch Issue No.
Card No.
Card Expiry Date
SEND TO: Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202874562.
E-mail: orders@epemag.wimborne.co.uk On-line Shop: www.epemag.wimborne.co.uk/shopdoor.htm
Payments must be in $£$ sterling - cheque or bank draft drawn on a UK bank. Normally supplied within seven days of receipt of order. Send a copy of this form, or order by letter if you do not wish to cut your issue.

SQUIRES MODEL \& CRAFT TOOLS ANTEX SOLDERING STATIONS ANTEX 660TC
 ANTEX 690SD

* Temperature control range $65-450^{\circ} \mathrm{C}$
* Thumb wheel potentiometer control
* 50 Watt Iron Included (25W Optional Extra)
* Wide range of spare bits available ($0.5 \mathrm{~mm}-6.0 \mathrm{~mm}$)

Normal Price £114.95-Now £89.95 Post Free to UK addresses.

* Temperature control range 65-450 ${ }^{\circ} \mathrm{C}$
* Digital readout temperature control
* 50 Watt static dissapative iron included
* Wide range of spare bits available ($0.5 \mathrm{~mm}-6.0 \mathrm{~mm}$)

Normal Price £169.95- Now £129.95 Post Free to UK addresses.

Post, Telephone or Fax your orders to:-
Squires, 100 London Road, Bognor Regis, West Sussex, PO21 1DD Tel 01243842424 Fax 01243842525

OUR 600 PAGE POST FREE MAIL ORDER CATALOGUE IS AVAILABLE FREE OF CHARGE TO ADDRESS IN THE UK - OVERSEAS CATALOGUE FREE, POSTAGE CHARGED AT COST TO CREDIT CARD

STEWART of READING

READOUT

 WIN A DIGITAL

 WIN A DIGITAL MULTIMETER

 MULTIMETER}

E-mail: editorial@epemag.wimborne.co.uk John Eecker addresses some of the general points readers have raised. Have you anything interesting to say? Drop us a line!
All letters quoted here have previously been replied to directly.

A $3^{1 / 2}$ digit pocket-sized I.c.d. multimeter which measures a.c. and d.c. voltage, d.c. current and resistance. It can also test diodes and bipolar transistors.

Every month we will give a Digital Multimeter to the author of the best Readout letter.

\star LETTER OF THE MONTH \star

DISPLAYING LATERAL THINKING

Dear EPE

It may interest you to know that I have modified John Becker's PIC World Clock (Aug '02) to run from a PIC16F84, and using shift register chips to drive the graphics 1.c.d. (GLCD) it uses.

I did it out of interest and to explore GLCDs and thought you would appreciate the lateral thinking. Being relatively new to electronics and PICs it would be so easy to just use other people's hard work (e.g. John's) and not know what was going on. Having built successful motor racing engines for some 12 years, I am used to getting the max from the min and still push for more! Like programming?

As you will appreciate, using shift registers slows things up a tad, some two seconds passing before the l.c.d. shows a picture. This made me look for ways to speed things up and some experimentation took place (flow bench and dyno time).

I was intrigued by the OUTDATA routine and its use - how was its present form arrived at? By applying my interpretation of Toshiba's data sheet (and a couple of accidents!) I found a huge saving in program and processor time/space. For instance, goodbye AUTOWRITE.
I was also using an $I^{2} \mathrm{C}$ EEPROM as a table store, the routine to access it was fun to
complete, it is only in 8-bit form at present but it works. A lot more pictures/tables could be accessed this way, without using program space or having to be careful using PCLATH commands. Weather pictures, moving maps, that sort of thing.
I have finished the displaying of the "world map", stored on EEPROM. The program is minimal and uses 192 commands total, 88 of which are shift register and EEPROM routines. All 1024 bytes are sent to the 1.c.d. without a break. The GLCD works every time, no erroneous displays or characters. Status "checks" are performed but hidden.
Your PIC Tutorial said "think default". . . so I did.

Graham Card, via email
Congratulations Graham on what you are achieving - and yes, "max from min" is a pretty good analogy for PIC programming!

I can't offer any more info on how I arrived at my GLCD routines - what is in the text is all that I managed to extract from Toshiba's info, and some of those routines were developed using blood and tears - brilliant of you to find a way to simplify some!

I'll put the source code you sent me in our PIC Tricks folder (on disk and our ftp site) for other readers to browse.

PIC A NUMBER

Dear EPE,
I stopped buying electronics magazines (including $E P E$) a couple of years ago, when pressures of work meant that my hobby had to take a back seat. At work (and home) I develop real-time embedded software, with the Microchip PIC being my most common target. I was therefore very interested to see the dedication that $E P E$ has been giving to this range of microcontrollers and bought the August 2002 edition. With an almost total lack of UK publications covering embedded programming from a hobbyist's perspective this is a refreshing change.
Having some interest in low power/low cost design, I would like to make a few comments about John Becker's PIC World Clock. From a purely hardware perspective, the 78L05 regulator, while cheap, has a very high quiescent current (3 mA to 5 mA). Micropower 5 V regulators are easily available with tiny quiescent currents at reasonable price.

The 7660 used to derive the negative bias voltage for the 1.c.d. could be dispensed with. The PIC contains two CCP modules that could be used in PWM mode with a charge pump to generate the required negative voltage. By extending the low power techniques, such as switching the l.c.d. off when not required, using a very low speed clock, and letting the PIC "sleep" as much as possible, the unit could be probably be economically used on batteries only. Perhaps a future
article could cover this aspect of PIC programming?

Finally, although John performed an excellent job in exploring the mysteries of code pages, and the use of large lookup tables, the 16 F 87 x range have the ability to read and write their own program memory via a set of special function registers with no paging issues. This, combined with being able to store 14 bits per program word means that RETLW is almost redundant in this type of application.

Keep up the excellent work, I will certainly be buying a copy more regularly.

Mike Rigby-Jones,
via email
Thanks for your comments, Mike. I take your point about the regulator but with the l.c.d. drawing about 18 mA or so, the $78 \mathrm{LO5}$ consumption I felt to be insignificant in comparison, hence the recommendation of the mains adaptor. Using Sleep etc I experimented for some time but even when supposedly "quiescent" this l.c.d. still draws the same current.

Yes, thanks, someone else has also made similar comments about accessing large tables - I live and learn and fresh input is always welcome. And. yes, I know and have used the PICs in negative voltage generation, but the useful voltage I've found to be only about $-3 \cdot 5 \mathrm{~V}$.

Glad you've re-found us - and appreciate our PIC emphasis!

AUTOSWITCH

I have recently finished Max Horsey's Infrared Autoswitch (July '02) and it worked like a dream, many thanks for that.

I have a query though: after turning on the power I hear the "click", the bulb stays on for seven seconds because I haven't cut the wire from P1 and P2 yet. After a few hours I decided I wanted the autoswitch to turn off after only one minute or so. When I turned off the power and opened the box I noticed that the transformer was really hot to touch. Is this normal? I have used everything that you said to use and I am using a mains bulb rated at 35 W .

Kevin Parr, via email
Kevin's email was forwarded to Max Horsey, who replied:

The lamp used makes no difference and the capacitor is not a problem either. The transformer is a type which is designed to run hot, so providing that the temperature is not excessive, e.g. liable to melt the case, then all is well

In my prototypes, the outside of the plastic case is warm to the touch and the transformer inside is hot (do not open the case whilst still connected to the mains!). The transformer is self-protected and - according to the supplier can be short-circuited without permanent damage. Feel the outside of the case - it should be warm, but not uncomfortable.

Max Horsey, via email

PIC TRAINING COURSES

Dear EPE,
We are looking for a course (or courses) for training our engineers in the use and programming of PIC microcontrollers. Microchip (UK) and Bluebird (Nigel Gardener) offer limited courses but we were wondering if you were aware of any held at technical colleges/universities etc. Any help you can give us would be appreciated.
Dave Williams, Taylor Studwelding Systems, Dewsbury, W.Yorks, by email

We don't know of any PIC courses as such Dave, but you might find my PIC Tutorial of interest - many people have learned PICs through it (and one even got a job through having done so). Originally published in Mar-May '98, it is now available in an upgraded version on CD-ROM as Assembly for PICmicro V2, plus its own greatly enhanced development board. Both are advertised in any recent issue of EPE, including this one of course.

PIC ALTIMETER

Dear EPE,

I need the PIC Altimeter design by John Becker from your magazine of Sept '98. How can I have the diagram sent by email?

Ghazi Issa, by email
So sorry but we can never send back issues or their diagrams by email, or fax. Back issues can be bought either from our Online shop at www.epemag.wimborne.co.uk/shopdoor.htm, or from the Editorial office, prices as quoted on the site and in current issues. You can also download recent issues from our EPE Online site at www.epemag.com.

BOUNTY UNSNAGGED

Dear EPE,

Two potential constructional hitches have come to my attention with regard to my $E P E$ Bounty (Oct '02). The design as it stands is without problem as far as I am aware, and performs very well, but this note is meant for troubleshooting. Firstly, there might be what appears to be ground effect as the detector is swung this way and that over the ground. In fact this is almost sure to be a loose p.c.b. inside the case. Once everything is secured inside the case, the problem is solved. Even very slightly loose parts inside could affect performance.

Secondly, depending on how the circuit was set up, and how the coil was wound and set, tuning might in some cases seem far too "sharp". This would not normally be the case, but to "soften" the tuning if required, wire a 2 M 2 resistor (or perhaps 4M7, for only slight "softening") between IC1 pins 1 and 5. Further, a 10k resistor may be wired in parallel with potentiometer VR3. Sensitivity is then best with a moderately fast crackle. Happy hunting.

Thomas Scarborough, via email

Thanks Thomas, your simple solutions are now well publicised!

SERIAL PIC TRAINING

Dear EPE,

Have you ever run tutorials regarding RS232 serial communications related to PIC microcontrollers, or indeed just RS232 tutorials as standalone? EPE is a good magazine, I always buy a copy for long train journeys. Thanks.

Peter Hale,
via email
No we haven't Peter, but the PIC16F87x series offer RS232 serial input/output and I've just recently proved that the MAX232 RS232 chip interfaces well with it. My 8-Chan Data Logger of Aug/Sep '99 shows how the PIC can output serial data, although it does not use the MAX232. However, my forthcoming Earth Resistivity Logger does use RS232 with the PIC and the Windows software. It will be published early next year.

Back issues for the '99 Logger are available from our Online shop or Editorial office.

Thanks for your kind comments - nice to know you are being suitably kept on track!

MAKING P.C.B.S

Dear EPE,

I have followed John Becker's PIC articles for some years and find them a valuable source of ideas. He produces PIC p.c.b.s month after month, would he mind sharing with me how he produces them? I have no problems with the single-sided artwork but getting the image on the copper is another matter.

Jim Fell,
via email
Well Jim, back in the late '80s I acquired an early version of EasyPC which I continue to use for the p.c.b. artwork etc, and from it print out to an ink-jet printer onto Overhead Projection film $(O H P)$ which comes from PC World. I then use pre-sensitised copper clad laminate, expose the OHP onto it as a contact print in a UV exposure unit, develop the image in dilute caustic soda and then etch in a heated bubble tank with ferric chloride.

After which I drill the board using an 18,000 r.p.m. drill press using tungsten carbide 0.8 mm drill bits for most components, but 1 mm for terminal pins for off-board wiring. It all typically takes about half an hour from printout to completion of drilling, depending on board size.

The UV exposure unit, etch tank and drill press are professional items I still have from my business days. There are low cost equivalents around, though, from a variety of sources, although I cannot offer opinions on their quality. Do a web search via www.google.com.

POSITIONING MATTERS

Dear EPE,

I have just started to make the Guitar Practice Amp as featured in EPE Feb '02. I have just got the resistors needed to make it, but they were all put in a bag and I don't know which one has which value. Would I be right in thinking it will affect the whole thing by not putting them in the right hole, or doesn't it matter?

Thom Costall, via email
It very much matters, Thom, which components go where and it is essential that you get the positioning of the types and their values right. As you appear to be a total novice I recommend that you do not assemble this project without advice from someone who already knows about electronics.

To learn more about the essential basics of electronics, I recommend that you study my Teach-In 2000 series of articles - they will give you much of the information you need, starting right at the beginning - how to identify resistors by the colour codes. The 12 articles (a year's worth) are available on $C D-R O M$ as stated in any recent issue of EPE - see the Direct Book Service pages. We wish you well in your newfound interest in electronics.

ENCOURAGING PICS

Dear EPE,
It occurred to me that a lot of your readers or papershop browsers may be put off PIC projects purely from a cost point of view. I retired some time ago and understand this well. It is actually surprising how little you need to spend to get started.

Obviously the first requirement is a PC, preferably with internet connection. Next are the development tools - Microchip's MPLAB is an obvious starting point and it's free, and while there are expensive programmers on sale, there are many inexpensive ones available - one web site worth browsing is at http://people.man.ac. uk/~mbhstdj/piclinks.html.

Thanks for your September issue's PIC Trick - excellent, my problem is finding the time to fit in the projects between the DIY and the gardening and the shopping and the

Les Clarke

Redditch, Worcestershire,
via email
Many thanks Les for your comments and support of PICs! In fact we are not aware of people considering PIC programming to be expensive. They seem to appreciate as you do that costs are pretty minimal.

ANCIENT MORSE

Dear EPE,
I have just come across an old project of John Becker's, PE July 1990, the Analogue Morse Reader. The p.c.b. has all components fitted except the l.c.d. and the i.c. holders, I even have an EPROM that I programmed.

I think the reason it was never completed was that I was moving house at the time and also seem to remember the cost of the 1.c.d. modules were quite expensive. Will I be able to use the same l.c.d. that I now use with your TK3 programmer? The original 1.c.d. needed a negative supply for the contrast, the one I have does not, that seems the only difference.

Colin Manklow,
via email
Goodness Colin, that's from a thousand years ago, and a different universe. My memory is far too faded with the years to recall the detail. In general, though, alphanumeric l.c.d.s of any standard type are interchangeable if the contrast adjustment is amended to suit the type, but otherwise no changes should be necessary. To replace an l.c.d. that needs a negative supply by one that does not only requires the contrast pin to be taken via the preset potentiometer to 0 V instead of the negative line.

Whilst some years ago it seemed necessary to specify that the l.c.d. should have a certain "compatibility" characteristic (I forget the details), this subject has not raised its head for at least four or five years and so far as I am aware all alphanumeric ("intelligent") l.c.d.s available on the hobbyist market are equally compatible and interchangeable as regards the main controlling chip that's built into them, and thus the code that controls them.
Have said that, though, treat my historical design as just that - history! My recent PICbased one is far better (Sept '02).

TUTORIALS ON AIR

Dear EPE,
I would be very grateful if you could give me some advice regarding your EPE PIC Tutorial as published in the Mar-May '98 editions. I have assembled the kit and p.c.b. from Magenta and after testing all seems fine. My problem is when I try to do the first test on the demonstration disk, e.g. tasm -1684 -b tuttest.asm, I get the error message "Bad command or file name". I have followed John's advice to the letter but can't get passed this problem. Any advice would be greatly appreciated.

Ray Jones,

 via emailI advised Ray to make sure all the files were in the same folder on his hard drive and then make sure he correctly typed the command. Ray then responded:

Thank you for your email and advice, the software is now responding and I'm very grateful. I'm walking on air now the problem is solved!

AERIAL GUITAR?

Dear EPE,

I am entering second year in electronic engineering in Galway, Ireland. This year I get to choose my practical project. I was wondering after looking through $E P E$ in college if you would have a schematic for an aerial transmitter-receiver circuit, for use on a guitar. I suppose a frequency range of 80 Hz to 20 kHz . Any ideas or help would be much appreciated.

Andrew O'Dowd,
via email
Sorry Andrew, we've not done such a design, transmitting "sound" generally requires the equipment to have type approval and/or be licenced.
For information on modules that are permitted to be used for data transmission at specific frequencies that are legally and internationally acceptable without licensing, browse www.rf solutions.com.

Best wishes for your second year!

BLOOMING WATER!

Dear EPE,

Hi from sunny South Africa. I have an algae problem with my swimming pool and what makes things worse is that I went for a black marble plastered pool. The question I have is what electronic solutions are available and if so where may I obtain a circuit diagram?

There are a couple of gadgets on the market here but are horrendously expensive. Years ago (1974) I came across a device that was used to ionize the water with amazing results. The problem is that I need to keep the chlorine level high and I think it is not healthy. Any ideas I am willing to try.

Dave Liddle, via email

It's not something we know about Dave, but perhaps some Readout readers might be able to help. Have you tried searching the Web for info? If not, try searching via www.google.com - it's an excellent search engine.

Learn About Microcontrollers

PIC Training \& Development System

The best place to start learning about microcontrollers is the PIC16F84. This is easy to understand and very popular with construction projects. Then continue on using the more sophisticated PIC16F877 family.

The heart of our system is a real book which lies open on your desk while you use your computer to type in the programme and control the hardware. Start with four very simple programmes. Run the simulator to see how they work. Test them with real hardware. Follow on with a little theory....

Our complete PIC training and development system consists of our universal mid range PIC programmer, a 306 page book covering the PIC16F84, a 262 page book introducing the PIC16F877 family, and a suite of programmes to run on a PC. The module is an advanced design using a 28 pin PIC16F872 to handle the timing, programming and voltage switching requirements. The module has two ZIF sockets and an 8 pin socket which between them allow most mid range 8,18 28 and 40 pin PICs to be programmed. The plugboard is wired with a 5 volt supply. The software is an integrated system comprising a text editor, assembler disassembler, simulator and programming software. The programming is performed at normal 5 volts and then verified with plus and minus 10% applied to ensure that the device is programmed with a good margin and not poised on the edge of failure. Requires two PP3 batteries which are not supplied.

NEW 32 bit PC Assembler
Experimenting with PC Computers with its kit is the easiest way ever to learn assembly language programming. If you have enough intelligence to understand the English language and you can operate a PC computer then you have all the necessary background knowledge. Flashing LEDs, digital to analogue converters, simple oscilloscope, charging curves, temperature graphs and audio digitising.
Kit now supplied with our 32 bit assembler with 84 page supplement detailing the new features and including 7 experiments PC to PIC communication. Flashing LEDs, writing to LCD and two way data using 3 wires from PC's parallel port to PIC16F84.

Book Experimenting with PCs . £21.50
Kit 1a 'made up' with software .. £52.00
Kit 1 u 'unmade' with software $£ 45.00$

C \& C++ for the PC

Experimenting with C \& C++ Programmes teaches us to programme by using C to drive the simple hardware circuits built using the materials supplied in the kit. The circuits build up to a storage oscilloscope using relatively simple C techniques to construct a programme that is by no means simple. When approached in this way C is only marginally more difficult than BASIC and infinitely more powerful. C programmers are always in demand. Ideal for absolute beginners and experienced programmers

> Book Experimenting with C \& C++ £24.99
> Kit CP2a 'made up' with software £32.51
> Kit CP2u 'unmade' with software £26.51
> Kit CP2t 'top up' with software £12.99

The Kits

The assembler and C \& C++ kits contain the prototyping board, lead assemblies,components and programming software to do all the experiments. The 'made up' kits are supplied ready to start. The 'top up' kit is for readers who have already purchased kit 1a or 1 u . The kits do not include the book.

Hardware required

All systems in this advertisement assume you have a PC (386 or better) and a printer lead. The experiments require no soldering.

> Universal mid range PIC programmer module
> + Book Experimenting with PIC Microcontrollers
> + Book Experimenting with the PIC16F877 (2nd edition)
> + Universal mid range PIC software suite
> .+ PIC16F84 and PIC16F872 test PICs.
> £157.41
> UK Postage and insurance. £ 7.50 (Europe postage \& Insurance. . £13.00. Rest of world. . £24.00)

Experimenting with PIC Microcontrollers

This book introduces the PIC16F84 and PIC16C711, and is the easy way to get started for anyone who is new to PIC programming. We begin with four simple experiments, the first of which is explained over ten and a half pages assuming no starting knowledge except the ability to operate a PC. Then having gained some practical experience we study the basic principles of PIC programming, learn about the 8 bit timer, how to drive the liquid crystal display, create a real time clock, experiment with the watchdog timer, sleep mode, beeps and music, including a rendition of Beethoven's Für Elise. Finally there are two projects to work through, using the PIC16F84 to create a sinewave generator and investigating the power taken by domestic appliances. In the space of 24 experiments, two projects and 56 exercises the book works through from absolute beginner to experienced engineer level.

Ordering Information

Telephone with Visa, Mastercard or Switch, or send cheque/PO for immediate despatch. All prices include VAT if applicable. Postage must be added to all orders. UK postage $£ 2.50$ per book, $£ 1.00$ per kit, maximum $£ 7.50$. Europe postage $£ 3.50$ per book, $£ 1.50$ per kit. Rest of World $£ 6.50$ per book, 2.50 per kit.
Web site:- www.brunningsoftware.co.uk

Experimenting with the PIC16F877

The second PIC book starts with the simplest of experiments to give us a basic understanding of the PIC16F877 family. Then we look at the 16 bit timer, efficient storage and display of text messages, simple frequency counter, use a keypad for numbers, letters and security codes, and examine the 10 bit A/D converter.

The 2nd edition has two new chapters. The PIC16F627 is introduced as a low cost PIC16F84. We use the PIC16F627 as a step up switching regulator, and to control the speed of a DC motor with maximum torque still available. Then we study how to use a PIC to switch mains power using an optoisolated triac driving a high current triac.

Mail order address:
138 The Street, Little Clacton, Clacton-on-sea, Essex, CO16 9LS. Tel 01255862308

CIRCUIT SURGERY

Our team of "surgeons" describe methods for measuring high side and low side currents using op.amps, and we explain the basic differences between some common electric motors.

Current Sensing Techniques

Last month we looked at a question arising from our ten-part educational series Teach-In 2002 (EPE Nov. '01 to Aug. '02) concerning "shift and amplify" circuits working from a single supply. We continue on a similar theme with a question from David Ardis on the use of differential amplifier circuits for current measurement.
"Teach-In 2002 Fig. 5.16 shows a differential amplifier test circuit. I have built this circuit and used it to measure current. Is it possible to use an op.amp without having a negative 12 V rail e.g. from a battery, and if so what modifications have to be made?"

The circuit to which David refers is an op.amp differential amplifier circuit, as shown in Fig. 1. We can use this circuit to measure current (I) by amplifying the voltage dropped across a known (and usually small) sense resistance, R_{S}, as shown in Fig.2.
The voltage output of the amplifier is proportional to the current in the sense resistor and could be used to drive a suitably calibrated voltmeter, or be connected to an analogue-to-digital converter to make the measurement. In other typical uses it could be connected to a control circuit to regulate the current, or to a comparator to trigger a current limiter.
This arrangement is known as high side current measurement because it can be used to measure current without requiring

Fig.1. Differential amplifier (split supplies).
the sense resistor to be connected to ground - i.e. the "low side" of the voltage source producing the current.
The sense resistor must usually be small so that it does not upset the circuitry being monitored, however, the smaller the resistor (and hence voltage drop) the more difficult (error and noise prone) the measurement becomes. For high current measurements, power dissipation in the sense resistor can lead to heating and measurement drift. As usual a suitable compromise must be sought when selecting R_{S}. Hence, R_{S} does not have to be a resistor; it could be a piece of wire or even a p.c.b. copper track (trace).

Fig.2. Principles of "high side" current measurement.

On The Low Side

For low side current sensing - where one end of the sense resistor is connected to ground - we can use a single-input, rather than differential, amplifier. However, a good differential amplifier will provide a more accurate measurement if, as is often the case on circuit boards, the ground voltage varies. The problem of "ground bounce" was discussed in Teach-In 2002 and also previously in Circuit Surgery. A low side current measurement circuit using a differential amplifier is shown in Fig. 3.
At this point we must also remind you that the common mode rejection ratio (CMRR) of the circuit in Fig. 1 is poor, or, more specifically, it is highly dependent on
the sense resistor accuracy. The differential amplifier's output should depend only on the voltage drop across the sense resistor, but the voltage at the sense resistor appears as a common mode input to the amplifier. If the CMMR is poor this voltage will influence the amplifier's output, distorting the current measurement.
The use of ordinary five per cent or ten per cent carbon film resistors in the differential amplifier circuit will lead to very poor common mode rejection. You need 0.01% resistor accuracy to get just 86 dB of CMRR with a prefect op.amp! In an experimental situation you could adjust the resistor values to maximise the CMRR, but you would have to take care to ensure that values did not drift.

Custom Chips

A much better solution is to use a differential amplifier i.c. that has built-in accurate resistors, such as the MAX4198 and MAX4199 from Maxim. Special "high side" current measurement chips are also available, for example the MAX471 and MAX4372. Note that the MAX472 is a current-sense amplifier for battery equipment whose sense range is set by an external resistor. You can view data sheets and some useful application notes for currentsense i.c.s at www.maxim-ic.com.

Fig.3. Principle of "low side" current measurement.

The differential amplifier in the circuits shown here may also be replaced by an instrumentation amplifier for better performance, either built using discrete op.amps or better using a dedicated instrumentation amplifier i.c.
In answer to David's question about using a single supply, things are actually easier here than the situation we discussed last month. As we are using a differential input, one side does not have to be referenced to ground.
The circuit shown in Fig. 1 can be modified by using the "halfsupply rail generator" we showed last month (p.790) to generate an "earth" to connect to the earthy end of resistor R2 (i.e. the point indicated by the earth/ground symbol in Fig.1). See Fig. 4 for an example of the kind of circuit arrangement you might try.
One aspect you have to watch out for is the common mode input range of the op.amp as illustrated in Fig. 4. The high side sense resistor R_{s} has one terminal connected to the power supply rail, and by virtue of the small voltage drop essential to prevent this resistor interfering with the measurement, the other side of R_{S} will be at almost the same voltage.
This means that the op.amp's common mode input voltage is about equal to the supply voltage. Not all op.amps work happily under such conditions so this is something you must check when selecting an op.amp for this task
The manufacture's data sheet will detail the acceptable common mode input range. Special high side current monitoring i.c.s are, of course, designed to cope with large common mode input voltages. IMB.

Motor Mania

What is the purpose of the capacitor usually found clipped to the body of most sin-gle-phase a.c. motors? asks Gerard Galvin by email.

Whilst the application and repair of electric motors is a topic in itself, and much of it is outside the scope of $E P E$, it's worth summarising some of the different types of electric motor that are in common use.
We all know how transformers work: briefly, they have a primary coil of copper windings which is magnetically coupled to a secondary winding, into which a voltage is induced. The motor effect relates to the motion of a conductor in the presence of a magnetic field, and is described in Fleming's Left Hand Motor Rule.
In the example of an induction motor, a series of electric coils is used to create a magnetic field around the motor. These windings are physically static and cannot move, so they are termed stators. In the centre of the motor is the shaft, which is part of the rotor.
There is no direct electrical connection to the spinning rotor. In order to make the motor spin round, the magnetic fields in the stator cause a field to be induced into the rotor, which is magnetically dragged and pushed around, so the rotor is forced to spin and drive a load. This is why an

Fig.4. Circuit to illustrate common input voltage when using single supply differential amplifier for high side current measurement.
induction motor can only operate on alternating current and not a direct current.

In A Spin

The number of pairs of electromagnetic "poles" in the motor determines the overall speed of operation. If only one pair of poles were present in the motor circuit, then running on a UK supply of 50 Hz frequency, one full revolution of the motor would occur every second, implying a fixed speed of 3,000 revolutions per minute (or 3,600 r.p.m. where there is a 60 Hz supply). If it were, say, a four-pole motor, then it would travel half a revolution per second, so its speed would be 1,500 r.p.m. and so on.
Hence, it is not the voltage but the supply frequency and the number of poles that ultimately determines the speed of such motors. This answers a very common query - how to control the speed of an a.c. motor as used in, for example, a bench grinder? The answer is really not by dropping the voltage but by changing the frequency instead.
However, many items of equipment are not designed for running at less than full speed otherwise they will stall under load and overheat due to excessive induction currents. It is potentially dangerous to overload an induction motor in this way.

Squirrel Cage

Depending on the design, the rotor may be solid steel or it may contain laminations with copper windings, copper bars or permanent magnets. The term "squirrel cage" relates to the use of thick copper loops as a cage of "windings" in a steel or iron rotor.
A heavy current is induced in them by the stator, which creates a magnetic field in the rotor and causes the rotation. The actual design of the rotors and how to control the magnetic fields is a science in itself and will not be discussed further here.
Note that in practice, they are most efficient (i.e. generally producing the least heat with optimal output torque) at 90 to 95 per cent of the applied synchronous frequency. Induction motors inherently run at a speed very slightly less than the stator's a.c. mains frequency or synchronous speed.
The term "slip" is used to describe the difference between the speed of the stator
frequency and the rotor speed. A squirrel cage motor inherently exhibits some slip when running. If the rotor frequency matched the stator frequency (synchronous mode) then there would be no output torque at all, so some "slip" is essential.

Making A Start

One inherent problem with induction motors, such as the sin-gle-phase type used in a domestic garden vac/shredder, is how to start the machine to begin with, because at zero revs there is no torque available. Induction motors do not self-start, so something is needed to "kick start" them into operation by giving them a gentle spin, after which they will spin up to full torque.
A common way of starting them is to use a large capacitor in series with a separate auxiliary or starting winding fitted within the stator. The capacitor reduces the starter winding's inductive reactance, and as the starter winding current leads the main stator winding current by anything up to 90 degrees, this difference in phase during start-up makes the motor turn over and start, after which the capacitor-start winding is switched out of circuit. Other types of capacitor-started motors are available (capacitor-run or a combination) each with their own characteristics.
If you have ever taken a fan heater or record turntable to bits you will have seen a small squirrel-cage motor that has a number of copper bands spot-welded into the steel lamination body. Strange! These "windings" start the motor by masking, in a crude way, part of the stator field. This creates a primitive permanent starter winding that shades part of the main pole - so it's known as a shaded-pole motor.
These are very common as they are cheap to make and quiet in operation but their efficiency is poor. Again, you cannot control their speed by adjusting the applied voltage: it is the number of poles and frequency that matters.
Many types of larger induction motor have a fan running on the rotor to help with cooling. A transmissions engineer once advised me that such motors should never be run at much less than 85% of their designed speed, because the point will be reached where they are generating heat more quickly than the fan's rotation can dissipate it, so the motor will overheat.
Some extremely sophisticated and expensive motor controllers are available for commercial use but these are well beyond the scope of the average constructional project. The Synchronous Clock Driver project (EPE Sept. '01) is an example of a PIC microcontroller design which shifts the frequency of very small mains synchronous motors to run at either 50 Hz or 60 Hz : it was originally designed so that American electric clocks could be operated from the UK 50 Hz supply. $A R W$
Next month: The differences in a number of other common motor types will be outlined. You can email the writers at alan@epemag.demon.co.uk.

EPE IS PLEASED TO BE ABLE TO OFFER YOU THESE ELECTRONICS CD-ROMS

ELECTRONICS PROJECTS

Logic Probe testing

Electronic Projects is split into two main sections: Building Electronic Projects contains comprehensive information about the components, tools and techniques used in developing projects from initial concept through to final circuit board production. Extensive use is made of video presentations showing soldering and construction techniques. The second section contains a set of ten projects for students to build, ranging from simple sensor circuits through to power amplifiers. A shareware version of Matrix's CADPACK schematic capture, circuit simulation and p.c.b. design software is included.

The projects on the CD-ROM are: Logic Probe; Light, Heat and Moisture Sensor; NE555 Timer; Egg Timer; Dice Machine; Bike Alarm; Stereo Mixer; Power Amplifier; Sound Activated Switch; Reaction Tester. Full parts lists, schematics and p.c.b. layouts are included on the CD-ROM.

ELECTRONIC CIRCUITS \& COMPONENTS V2.0

Circuit simulation screen

Provides an introduction to the principles and application of the most common types of electronic components and shows how they are used to form complete circuits. The virtual laboratories, worked examples and pre-designed circuits allow students to learn, experiment and check their understanding. Version 2 has been considerably expanded in almost every area following a review of major syllabuses (GCSE, GNVQ, A level and HNC). It also contains both European and American circuit symbols. Sections include: Fundamentals: units \& multiples, electricity, electric circuits, alternating circuits. Passive Components: resistors, capacitors, inductors, transformers. Semiconductors: diodes, transistors, op.amps, logic gates. Passive Circuits. Active Circuits. The Parts Gallery will help students to recognise common electronic components and their corresponding symbols in circuit diagrams. Included in the Institutional Versions are multiple choice questions, exam style questions, fault finding virtual laboratories and investigations/worksheets.

ANALOGUE ELECTRONICS

Complimentary output stage

Analogue Electronics is a complete learning resource for this most difficult branch of electronics. The CD-ROM includes a host of virtual laboratories, animations, diagrams, photographs and text as well as a SPICE electronic circuit simulator with over 50 pre-designed circuits.
Sections on the CD-ROM include: Fundamentals - Analogue Signals (5 sections), Transistors (4 sections), Waveshaping Circuits (6 sections). Op.Amps -17 sections covering everything from Symbols and Signal Connections to Differentiators. Amplifiers - Single Stage Amplifiers (8 sections), Multi-stage Amplifiers (3 sections). Filters - Passive Filters (10 sections), Phase Shifting Networks (4 sections), Active Filters (6 sections). Oscillators -6 sections from Positive Feedback to Crystal Oscillators. Systems - 12 sections from Audio Pre-Amplifiers to 8 -Bit ADC plus a gallery showing representative p.c.b. photos.

DIGITAL ELECTRONICS V2.0

Virtual laboratory - Traffic Lights

Filter synthesis

-

Digital Electronics builds on the knowledge of logic gates covered in Electronic Circuits \& Components (opposite), and takes users through the subject of digital electronics up to the operation and architecture of microprocessors. The virtual aboratories allow users to operate many circuits on screen. Covers binary and hexadecimal numbering systems, ASCII, basic logic gates, monostable action and circuits, and bistables - including JK and D-type flip-flops. Multiple gate circuits, equivalent logic functions and specialised logic functions. Introduces sequential logic including clocks and clock circuitry, counters, binary coded decimal and shift registers. A/D and D/A converters, traffic light controllers, memories and microprocessors - architecture, bus systems and their arithmetic logic units. Sections on Boolean Logic and Venn diagrams, displays and chip types have been expanded in Version 2 and new sections include shift registers, digital fault finding, programmable logic controllers, and microcontrollers and microprocessors The Institutional versions now also include several types of assessment for supervisors, including worksheets, multiple choice tests, fault finding exercises and examination questions.

FILTERS

Filters is a complete course in designing active and passive filters that makes use of highly interactive virtual laboratories and simulations to explain how filters are designed. It is split into five chapters: Revision which provides underpinning knowledge required for those who need to design filters. Filter Basics which is a course in terminology and filter characterization, important classes of filter, filter order, filter impedance and impedance matching, and effects of different filter types. Advanced Theory which covers the use of filter tables, mathematics behind filter design, and an explanation of the design of active filters. Passive Filter Design which includes an expert system and filter synthesis tool for the design of low-pass, high-pass, band-pass, and band-stop Bessel, Butterworth and Chebyshev ladder filters. Active Filter Design which includes an expert system and filter synthesis tool for the design of low-pass, high-pass, band-pass, and band-stop Bessel, Butterworth and Chebyshev op.amp filters.

ELECTRONICS CAD PACK

PCB Layout

Electronics CADPACK allows users to design complex circuit schematics, to view circuit animations using a unique SPICEbased simulation tool, and to design printed circuit boards. CADPACK is made up of three separate software modules. (These are restricted versions of the full Labcenter software.) ISIS Lite which provides full schematic drawing features including full control of drawing appearance, automatic wire routing, and over 6,000 parts. PROSPICE Lite (integrated into ISIS Lite) which uses unique animation to show the operation of any circuit with mouse-operated switches, pots. etc. The animation is compiled using a full mixed mode SPICE simulator. ARES Lite PCB layout software allows professional quality PCBs to be designed and includes advanced features such as 16-layer boards, SMT components, and an autorouter operating on user generated Net Lists.

ROBOTICS \& MECHATRONICS

Case study of the Milford Instruments Spider

Robotics and Mechatronics is designed to enable hobbyists/students with little previous experience of electronics to design and build electromechanical systems. The CD-ROM deals with all aspects of robotics from the control systems used, the transducers available, motors/actuators and the circuits to drive them. Case study material (including the NASA Mars Rover, the Milford Spider and the Furby) is used to show how practical robotic systems are designed. The result is a highly stimulating resource that will make learning, and building robotics and mechatronic systems easier. The Institutional versions have additional worksheets and multiple choice questions.

- Interactive Virtual Laboratories

Little previous knowledge required
Mathematics is kept to a minimum and all calculations are explained

- Clear circuit simulations

Institutional (Schools/HE/FE/Industry)............... $£ 99$ plus VAT
 Institutional 10 user (Network Licence)£199 plus VAT Site Licence.
 Hobbyist/Student ..£45 inc VAT .£499 plus VAT
 PRICES
 Prices for each of the CD-ROMs above are:

(UK and EU customers add VAT at 17.5\% to "plus VAT" prices)

PICmicro TUTORIALS AND PROGRAMMING

VERSION 2 PICmicro MCU DEVELOPMENT BOARD
 Suitable for use with the three software packages listed below.

This flexible development board allows students to learn both how to program PICmicro microcontrollers as well as program a range of $8,18,28$ and 40 -pin devices. For experienced programmers all programming software is included in the PPP utility that comes with the development board. For those who want to learn, choose one or all of the packages below to use with the Development Board.

- Makes it easier to develop PICmicro projects
- Supports low cost Flash-programmable PICmicro devices
- Fully featured integrated displays - 13 individual I.e.d.s, quad 7 -segment display and alphanumeric I.c.d. display
- Supports PICmicro microcontrollers with A/D converters
- Fully protected expansion bus for project work
- All inputs and outputs available on screw terminal connectors for easy connection

HARDWARE

£145 including VAT and postage 12V 500mA plug-top PSU (UK plug) £7
25-way ' D ' type connecting cable £5

SOFTWARE

 Suitable for use with the Development Board shown above.
ASSEMBLY FOR PICmicro V2

 (Formerly PICtutor)Assembly for PICmicro microcontrollers V2.0 (previously known as PICtutor) by John Becker contains a complete course in programming the PIC16F84 PICmicro microcontroller from Arizona Microchip. It starts with fundamental concepts and extends up to complex programs including watchdog timers, interrupts and sleep modes. The CD makes use of the latest simulation techniques which provide a superb tool for learning: the Virtual PICmicro microcontroller. This is a simulation tool that allows users to write and execute MPASM assembler code for the PIC16F84 microcontroller on-screen. Using this you can actually see what happens inside the PICmicro MCU as each instruction is executed which enhances understanding.

- Comprehensive instruction through 39 tutorial sections - Includes Vlab, a Virtual PICmicro microcontroller: a fully functioning simulator Tests, exercises and projects covering a wide range of PICmicro MCU applications - Includes MPLAB assembler - Visual representation of a PICmicro showing architecture and functions Expert system for code entry helps first time users - Shows data flow and fetch execute cycle and has challenges (washing machine, lift, crossroads etc.) - Imports MPASM files.

Virtual PICmicro

'C' FOR PICmicro VERSION 2

The C for PICmicro microcontrollers CDROM is designed for students and professionals who need to learn how to program embedded microcontrollers in C. The CD contains a course as well as all the software tools needed to create Hex code for a wide range of PICmicro devices including a full C compiler for a wide range of PICmicro devices.
Although the course focuses on the use of the PICmicro microcontrollers, this CDROM will provide a good grounding in C programming for any microcontroller.

- Complete course in C as well as C programming for PICmicro microcontrollers - Highly interactive course - Virtual C PICmicro improves understanding Includes a C compiler for a wide range of PICmicro devices - Includes full Integrated Development Environment - Includes MPLAB software - Compatible with most PICmicro programmers - Includes a compiler for all the PICmicro devices.

Minimum system requirements for these items: Pentium PC running Windows 98, NT, 2000, ME, XP; CD-ROM drive; 64MB RAM; 10MB hard disk space.

FLOWCODE FOR PICmicro

Flowcode is a very high level language programming system for PICmicro microcontrollers based on flowcharts. Flowcode allows you to design and simulate complex robotics and control systems in a matter of minutes.
Flowcode is a powerful language that uses macros to facilitate the control of complex devices like 7 -segment displays, motor controllers and I.c.d. displays. The use of macros allows you to control these electronic devices without getting bogged down in understanding the programming involved.
Flowcode produces MPASM code which is compatible with virtually all PICmicro programmers. When used in conjunction with the Version 2 development board this provides a seamless solution that allows you to program chips in minutes.

- Requires no programming experience Allows complex PICmicro applications to be designed quickly - Uses international standard flow chart symbols (ISO5807) Full on-screen simulation allows debugging and speeds up the development process - Facilitates learning via a full suite of demonstration tutorials - Produces ASM code for a range of $8,18,28$ and 40 -pin devices - Institutional versions include virtual systems (burglar alarms, car parks etc.).

Burglar Alarm Simulation

PRICES
Prices for each of the CD-ROMs above are:
(Order form on next page)

Hobbyist/Student
Institutional (Schools/HE/FE/Industry)
Flowcode Institutional Institutional 10 user (Network Licence) Site Licence
£45 inc VAT £99 plus VAT £70 plus VAT £249 plus VAT £599 plus VAT

EPE's own Teach-In CD-ROM, contains the full 12-part Teach-In series by John Becker in PDF form plus the Teach-In interactive software covering all aspects of the series. We have also added Alan Winstanley's highly acclaimed Basic Soldering Guide which is fully illustrated and which also includes Desoldering. The Teach-In series covers: Colour Codes and Resistors, Capacitors, Potentiometers, Sensor Resistors, Ohm's Law, Diodes and L.E.D.s, Waveforms, Frequency and Time, Logic Gates, Binary and Hex Logic, Op.amps, Comparators, Mixers, Audio and Sensor Amplifiers, Transistors, Transformers and Ampifiers, Voltage Regulation, Integration, Differ Rectifiers, Voltage Regulation, Integration, Differentiation, 7 -segment Displays, L.C.D.s, Digital-to-Analogue.
Each part has an associated practical section and the series includes a simple PC interface so you can use your PC as a basic oscilloscope with the various circuits. A hands-on approach to electronics with numerous breadboard circuits to try out.
£12.45 including VAT and postage. Requires Adobe Acrobat (available free from the Internet - www.adobe.com/acrobat).
FREE WITH EACH TEACH-IN CD-ROM - Electronics Hobbyist Compendium 80-page book by Robert Penfold. Covers Tools For The Job; Component Testing; Oscilloscope Basics.

ELECTRONICS IN CONTROL

Two colourful animated courses for students on one CD-ROM. These cover Key Stage 3 and GCSE syllabuses. Key Stage 3: A pictorial look at the Electronics section featuring animations and video clips. Provides an ideal introduction or revision guide, including multi-choice questions with feedback. GCSE: Aimed at the Electronics in many Design \& Technology courses, it covers many sections of GCSE Electronics. Provides an ideal revision guide with Homework Questions on each chapter. Worked answers with an access code are provided on a special website.

Single User $£ 29$ inc. VAT. Multiple User $£ 39$ plus VAT
Student copies (available only with a multiple user copy) £6 plus VAT
(UK and EU customers add VAT at 17.5\% to "plus VAT" prices)

MODULAR CIRCUIT DESIGN

Contains a range of tried and tested analogue and digital circuit modules, together with the knowledge to use and interface them. Thus allowing anyone with a basic understanding of circuit symbols to design and build their own projects. Version 3 includes data and circuit modules for a range of popular PICs; includes PICAXE circuits, the system which enables a PIC to be programmed without a programmer, and without removing it from the circuit. Shows where to obtain free software downloads to enable BASIC programming.
Essential information for anyone undertaking GCSE or "A" level electronics or technology and for hobbyists who want to get to grips with project design. Over seventy different Input, Processor and Output modules are illustrated and fully described, together with detailed information on construction, fault finding and components, including circuit symbols, pinouts, power supplies, decoupling etc.

Single User £19.95 inc. VAT. Multiple User £34 plus VAT (UK and EU customers add VAT at 17.5\% to "plus VAT" prices)

Counter project

Digital Works Version 3.0 is a graphical design tool that enables you to construct digital logic circuits and analyze their behaviour. It is so simple to use that it will take you less than 10 minutes to make your first digital design. It is so powerful that you will never outgrow its capability - Software for simulating digital logic circuits - Create your own macros - highly scalable - Create your own circuits, components, and i.c.s \bullet Easy-to-use digital interface - Animation brings circuits to life - Vast library of logic macros and 74 series i.c.s with data sheets - Powerful tool for designing and learning. Hobbyist/Student £45 inc. VAT.
Institutional £99 plus VAT.
Institutional 10 user $£ 199$ plus VAT Site Licence £499 plus VAT.

ELECTRONIC

COMPONENTS PHOTOS
A high quality selection of over 200 JPG images of electronic components. This selection of high resolution photos can be used to enhance
projects and
presentations or to help
with training and
educational material.
They are royalty free for

personal printed projects, and can also be used royalty free in books, catalogues, magazine articles as well as worldwide web pages (subject to restrictions - see licence for full details).
Also contains a FREE 30-day evaluation of Paint Shop Pro 6 - Paint Shop Pro image editing tips and on-line help included!

Price $£ 19.95$ inc. VAT

Minimum system requirements for these CD-ROMs: Pentium PC, CD-ROM drive, 32MB RAM, 10MB hard disk space. Windows 95/98/NT/2000/ME/XP, mouse, sound card, web browser.

Please send me:

CD-ROM ORDER FORM

\square Electronic Projects

Electronic Circuits \& Components V2.0
Analogue Electronics
Version required:
Digital Electronics V2.0 Filters
Electronics CAD Pack
Robotics \& Mechatronics
Assembler for PICmicro
'C' for PICmicro
Hobbyist/Student Institutional Institutional 10 user

VISA

Flowcode for PICmicro
Digital Works 3.0

PICmicro Development Board (hardware)

Development Board UK plugtop power supply
\square Development Board 25-way connecting lead

Teach-In 2000 + FREE BOOK
Electronic Components Photos
Electronics In Control - Single User
Electronics In Control - Multiple User
Note: The software on each version is
Modular Circuit Design - Single User the same, only the licence for use varies.

Full name:
Address:
.Post code:Tel. No:
Signature:
\square I enclose cheque/PO in $£$ sterling payable to WIMBORNE PUBLISHING LTD for $£$Please charge my Visa/Mastercard/Amex/Diners Club/Switch: £Card expiry date:

Card No:
Switch Issue No

ORDERING
 ALL PRICES INCLUDE UK POSTAGE
 Student/Single User/Standard Version price includes postage to most countries in the world
 EU residents outside the UK add £5 for airmail postage per order

Institutional, Multiple User and Deluxe Versions - overseas readers add $£ 5$ to the basic price of each order for airmail postage (do not add VAT unless you live in an EU (European Union) country, then add $171 / 2 \%$ VAT or provide your official VAT registration number).

Send your order to: Direct Book Service

Wimborne Publishing Ltd
408 Wimborne Road East
Ferndown, Dorset BH22 9ND

To order by phone ring

01202873872. Fax: 01202874562

Goods are normally sent within seven days
E-mail: orders@wimborne.co.uk
Online shop:
www.epemag.wimborne.co.uk/shopdoor.htm

Special Feature

ELECTRONIC PAPER

> After more than 20 years of research, manufacturers seem to have cracked the problem of making electronic paper.

PAPER'S been around for about 3,000 years, give or take a century or two. We've been writing on it for most of that time and printing on it for over a thousand years. Even now, at a time when everything seems to be going digital, we still read most of our news, articles and fiction in the form of ink on paper.

Scientists have tried for decades to produce an electronic form of paper - a paperthin, flexible sheet on which electronically generated text or images can be displayed - in effect, the thinnest and most flexible electronic screen ever made. That is quite a tall order, but researchers seem finally to have solved the problems.

Electronic Ink

The key development is an electronic ink that can be printed onto thin sheets of material and that changes colour in an electric field. Two companies have come up with slightly different ways of doing it.

One solution being investigated by EInk is for an ink made from millions of spherical microcapsules, each no thicker than a human hair. About 155,000 of them could squeeze into a square centimetre. The full-stop at the end of this sentence would contain about 30 .

Each capsule contains microscopic particles suspended in a clear liquid. Half of

Cross-section of the charged E-ink microcapsule.
the particles are one colour and half are a different colour - black and white for a monochrome display. Their electrical properties are different too. The white particles are positively charged and the black particles are negatively charged.

The ink is sandwiched between two electrodes, the top one transparent of course. When an electric field is applied to the whole sheet so that the top electrode is negative, the white particles are attracted to the top of the capsules and the black are drawn down to the bottom. The sheet turns white, like a blank sheet of paper.

Reversing the polarity of the field applied to some parts of the sheet brings the black particles up to the top and makes the white particles sink. Those parts of the sheet turn black. It is not hard to imagine that if the capsules are manipulated with sufficiently fine control, the sheet can display text or images, or both. Plus, they are as sharp and bright as if they'd been printed.

Colourful Beads

Developed at Xerox and to be marketed by Gyricon Media, the second electronic ink uses millions of tiny beads with a different colour on each side. The two sides carry opposite electric charges. The beads are sandwiched between two electrodes as before. They sit in cavities within the material. Flipping the applied electric field makes the beads rotate to show a different colour.
Unlike conventional displays, it is claimed that images on electronic paper can be viewed clearly over a very wide angle in reflected light, just like a printed image. But what if the batteries run flat? Do the pages go blank?

No. Images created with electronic ink stay put until it's time to change them. They draw current from the batteries only when the image is changed. A programmable electronic ink display will run for up to two years on three AA batteries. And, without power, the image is retained indefinitely.

Go-anywhere Displays
 These electronic papers are so thin and

 flexible that they can be applied to almost any surface - from walls in public places and point-of-sale materials in shops to display panels on all sorts of consumer goods (watches, mobile phones, computers, etc). They could even be built into clothes!Advertising signs have already been made using electronic paper and inks. Some of them combine programmable graphics and/or text overlaid on a traditionally printed background.

Some of the applications envisaged for electronic paper are pretty neat. Imagine a book of electronic paper pages with the driver electronics built into its spine. Feel like reading the latest best-seller? Just download it from the Web using a wireless link and there it is in black and white, and you can flip through the pages as if it was a normal book.

An electronically charged pencil rotates the bichromal beads in a sheet of Xerox electronic reusable paper.

Electronic Notepads

Xerox and Gyricon Media have also demonstrated how to write and draw on their electronic paper using a charged pencil. Electronically active surfaces aren't new of course. Designers have been using graphics tablets for decades.

However, using a graphics tablet is not the same as jotting something down on paper. Whatever is written on a tablet doesn't appear on the tablet itself, so it is not as natural and intuitive as writing on paper. Writing on electronic paper is much more like the real thing. As the pencil slides across the electronic paper, its charged tip rotates the bichromal (two-colour) beads in the paper and changes their colour.

Looking one step ahead, in theory at least, it may be possible to hook up an electronic notepad like this with character recognition software so that anything written on the pad could be fed straight into a word processor and saved or emailed.

Constructional Project EPE HYBRID COMPUTER

PETROS KRONIS

Part 2

Abstract

Real-time computation of complex system behaviour is greatly simplified by combining analogue and digital processing techniques.

LAST month the circuit technicalities for this design were discussed at length, and the initial constructional aspects were described. In this final part the remaining constructional details are presented (see Fig.18), plus guidance on actually using the design to simulate realworld engineering problems.

TESTING

Before any serious programming is attempted it is good practice to carry out the following simple testing procedures which will help to identify any errors in the construction, or problems in the operation of the computer.

The analogue computer is programmed by connecting the various processing units together via the patch panel. It is necessary
that you familiarise yourself with the arrangement of the patch panel.
The panel layout for one amplifier is shown in Fig.19. The layout for the other nine amplifiers is the same except for the reference voltage socket 7, and the four rightmost sockets of the first row of sockets, as indicated in the righthand column.
Functional notations for the sockets are given in Fig. 20.

TESTING THE ADDING AMPLIFIERS

To test the Adding Amplifiers, do it in the following order:

1. Switch all ten amplifiers to Add using the amplifier toggle switches, S1 and S2.
2. Switch the power on.
3. Set up a reference voltage of 1 V . This
can be done by connecting a +15 V reference voltage to the input of any of the Coefficient Multiplier potentiometers (VR15) and adjusting the dial until the potentiometer output reads 1 V (measured using a multimeter).
4. Apply the 1 V reference voltage to the $\times 1$ inputs of the amplifiers. Measure the amplifier output voltage. It should read 1 V . Test all 10 amplifiers in turn.
5. Repeat the test, applying the 1 V reference voltage to the $\times 10$ amplifier inputs. The amplifier outputs should read 10 V .

/NTEGRATING AMPLIFIER TESTING

Test the Integrating Amplifiers in the following order:

1. Switch all ten amplifiers to Integrate using the amplifier toggle switches, S1 and S2. Switch the mode switches to Compute/Auto Reset (S3) and Compute/Auto Hold (S4).
2. Make the connection for integration with a nose gain of 1, i.e. connect socket 6 to socket 13 (see Fig.19).
3. Switch the power on.

Fig.18. Interconnection wiring diagram.

10	$\bigcirc 8$
20	$\bigcirc 9$
$3 \bigcirc$	$\bigcirc 10$
$4 \bigcirc$	$\bigcirc 11$
50	012
60	013
70	014

SOCKET 1
SOCKET 8
SOCKETS 2 AND SOCKETS 4 AND 5 SOCKETS 10, 11 AND 12 SOCKET 7

SOCKET 9

INPUT TO POTENTIOMETER
OUTPUT FROM POTENTIOMETER
$\times 1$ INPUTS TO AMPLIFIER
x10 INPUTS TO AMPLIFIER
AMPLIFIER OUTPUT SOCKETS
REFERENCE VOLTAGE SOCKET (+15 V ON ODD NUMBERED AMPL;IFIERS, OV ON EVEN NUMBERED AMPLIFIERS

INITIAL CONDITIONS SOCKET
NOTE: THE LAST FOUR SOCKETS ON THE FIRST ROW OF THE PATCH PANEL, (TOP ROW ABOVE AMPLIFIERS A9 AND A10) ARE CONNECTED TO PANEL METER ME1, PANEL METER ME2 AND THE LAST TWO TO A REFERENCE VOLTAGE OF

Fig.19. Patch panel socket layout and functions for one amplifier module.
4. Using potentiometer VR13 adjust the sensitivity of panel meter ME1 to give maximum deflection at +15 V and connect the amplifier output to the panel meter.
5. Apply a 1 V reference voltage (as set in the previous tests using VR15) to the $\times 1$ inputs of the amplifier. The output should increase linearly at a rate of 1 V per second until the amplifier saturates. The appropriate over-voltage warning 1.e.d. (D4) should come on as the amplifier saturates. Bear in mind that the amplifiers invert the input voltage, both when adding and when integrating,
6. If the reference voltage is applied to the $\times 10$ inputs, the output increases at a rate of $10 \mathrm{~V} / \mathrm{s}$, which is too fast to see unless shown on an oscilloscope. If the integrator is connected with a nose gain of 10 , i.e. connection of socket 6 to socket 14 , integration is even faster, by a factor of 10 .

HOLD MODE TESTING

To test the Hold mode, follow the same procedure described in the first four numbered paragraphs in the previous test, and then:

1. Before the amplifier saturates, switch the Compute/Auto Hold toggle switch (S4) to Manual Hold. The processing should freeze and the output should remain constant. (Some drift may be present.) 2. Now switch the Compute/Auto Reset toggle switch (S3) to Manual Reset. The output of the integrators should become zero.

PROGRAMMING CONVENTIONS

In the preceding simple examples, the process of connecting the various analogue computer units is described in English. However, this is not very efficient, or universally understandable, and pro-
grammers have developed a generally accepted code for the description of an analogue computer program.
The program is represented by a flow diagram, which is a collection of symbols representing the various units of the analogue computer, connected together. The symbols used are those given in Fig. 5 (Part 1).
Using this symbolic convention, the analogue computer flow diagram in Fig. 21 shows two successive integrations by amplifiers A1 and A2, of a step function of 1V set up by coefficient multiplier P1.
Panel meters ME1 and ME2 are used to monitor the outputs of amplifiers A1 and A2 respectively. If we could plot these outputs on an X-Y plotter we would find that when a step function is integrated the result is a ramp function, and when a ramp function is integrated a square function (x^{2}) is the result.
These results are shown in the circles of Fig.21. Note that the amplifiers invert the input signals, i.e. a positive step function produces a negative ramp function and a negative ramp function results in a positive square function.
To set up this program on the analogue computer, the patch panel is wired as shown in Fig.22. This diagram is not normally drawn because a programmer with some

Fig.20. Functional notations for the amplifier module sockets.
3. Calibrate panel meters ME1 and ME2 by applying a reference voltage of +15 V and adjusting the sensitivity of the meters to read that value at around maximum deflection, using their potentiometers, VR13 and VR14.
4. Switch amplifiers A1 and A2 to Integrate.
5. Set mode switches to Compute/Auto Hold (S4), and Manual Reset (S3).
6. Switch Manual Reset (S3) to Compute/Auto Reset to begin the computation function.
7. Observe the panel meters.

OFFSET NULL TRIM

When the input of an ideal op.amp powered by a split power supply (e.g. $+15 / 0 \mathrm{~V} /-15 \mathrm{~V})$ is grounded $(0 \mathrm{~V})$, the output should be zero. However, this is not the case in a real op.amp and a corrective voltage is necessary to eliminate the offset error. The offset voltage of the OPA177 used in the EPE Hybrid Computer is very low, $25 \mu \mathrm{~V}$ maximum. But even so, the offset null procedure is sometimes needed to reduce errors and unwanted output drift.

Adjust the offset voltage as follows:

1. Set all amplifiers to Add.
2. Connect the output of amplifier A1 to meter ME1.
3. Ground one of the $\times 10$ inputs of the amplifier.
4. Turn the sensitivity of the meter as low as possible (VR13).
5. Switch the power on.
6. Increase the sensitivity of the meter gradually to maximum.
7. Adjust the offset null potentiometer (VR1 to VR10, as required) to make the meter read zero.
8. Repeat the procedure for the other amplifiers.
9. Make sure you do not disturb the offset null potentiometers during the programming and execution of the program.

INITIAL CONDITIONS EXAMPLE

In the previous examples we assumed that at the start of the computation, i.e. at time $=$ zero, all variables had zero value . This may not always be the case.

Suppose we wanted to give an initial value to the output of an integrator before the computation begins. We might like to investigate the flight of a rocket, for

Fig.21. Analogue computer flow diagram example.
experience can wire the patch panel by simply looking at the flow diagram. It is given here to help beginners.

To run the program follow these steps:

1. Wire the patch panel.
2. Switch the power on.

Fig.23. Initial conditions setup.
example, not from the point of launch but from some height above the launching pad, at which the rocket will have some velocity and acceleration. This can be done by connecting wires carrying reference voltages, to the initial conditions sockets of the integrators.
Let us assume that we want to integrate a step function of +1 V , but this time we want the integrator to begin integrating from an initial value of +5 V .
Set up the program illustrated in Fig. 23 on the patch panel (a first test of your understanding of how to implement such programs, as discussed in relation to Fig.21). P1 and P2 are two VR15 potentiometers.
To run this program follow these steps:

1. Switch amplifier A1 to Integrate (S3) and A2 to Add (S1 and S2).
2. Switch the power on.
3. Adjust P1 to give +1 V at the input to A 1 and P 2 to give +5 V at the output of A 2 .

4. Switch Compute/Auto Hold to Manual Hold (S4).

5. Switch Compute/Auto Reset to Manual Reset (S3). Wait a few seconds for the output of A1 to settle to +5 V .
6. Switch Manual Hold to Compute/Auto Hold (S4).

7. Switch Manual Reset to

 Compute/Auto Reset (S3) and observe the results.You should find that the integration begins from a value of +5 V and the output of A1 reduces at a rate of $-1 \mathrm{~V} / \mathrm{s}$ until it saturates at -15 V .
The initial condition value is invariably formed using an adder and a potentiometer, unless of course the exact value is available as a reference voltage. It is common practice, therefore, not to show these two computing elements in the program diagram but simply to show the value being applied to the initial condition socket as shown in Fig. 24.

SPRINGMASS EXAMPLE

Let's take the spring-mass system and the capacitorinductor circuit as examples of simulating engineering problems on the analogue computer.

The diagram in Fig.25a shows a mass m, suspended by a spring of stiffness K. Its electrical equivalent system is shown as a capacitance-inductance series circuit in Fig. 25b. Both systems when disturbed will oscillate. We now illustrate how to simulate the systems on the analogue computer and observe their behaviour.

Fig.25. Mechanical and electrical equivalent circuits.

To do this we must first write down the equation of motion, which in the mechanical system involves no more than Newton's Law of Motion:
Force $=$ mass \times acceleration, which we will express as $F=m \times a$.

Imagine that the mass (m) is pulled down a small distance (d) from the equilibrium position and then released. At the moment of release the spring pulls the mass up with a force (F) of $K d$. Applying the equation of motion, we get:

$-K d=m a$

Dividing both sides of the equation by mass m and rearranging so that the highest derivative (a) is on the left hand side of the equation and all other terms on the right hand side, we get:

$a=-K d / m$

From this equation we draw the flow diagram shown in Fig. 26.
Note that there are special textual symbols that can be used to express the graphical symbols, but their discussion and use is beyond the scope of this article.
As the flow diagram shows, by integrating the acceleration (a) using amplifier A1 we obtain the velocity (v) which is shown
on panel meter ME1. Amplifier A2 integrates the velocity to give the displacement (d) shown on panel meter ME2.

We use amplifier A3 as an inverter to obtain a displacement of $-d$, and potentiometer P1 to multiply by a constant factor of K / m. The output of the potentiometer is now $-\frac{K}{m} d$ which, looking at our equation, is equal to the acceleration, a. So we connect the output of P1 back to the input of A1 to complete the loop.

The system as it stands will not oscillate unless it is disturbed. Theoretically, once it is disturbed it will continue to vibrate indefinitely, because our equation does not take into account any air resistance (or electrical resistance in the case of the electrical equivalent system) or any energy losses in the system. In practice, however, you will find that the oscillations will reduce and die out due to these effects. The analogue computer should produce results very near to the theoretical predictions

To run this program follow these steps:

1. Connect the patch panel.
2. Ensure A1 and A2 are Integrating and A3 is Adding.
3. Set mode switches to Compute/Auto Reset (S3) and Compute/Auto Hold (S4).

4. Switch the power on.

5. Play around with the dial setting of P1. By reducing its value you will see the spring extending (displacement d on ME2), until the amplifiers saturate. Now increase the value of P1 to make the system oscillate at different frequencies, as you vary the value of K / m. Observe the meters ME1 and ME2 to see how the system behaves.

You should find that a high value of K / m (i.e. a high spring stiffness or small mass, or both), gives a high frequency of oscillation and vice versa. The other point to note is that the oscillation is sinusoidal. The output of A1 (the velocity, v), is a cosine function, whereas that of A2 (the displacement, $d)$ is a sine function.

Fig.27. Solution to the problem of the spring-mass system.

Fig.24. Representation of initial conditions.

Fig.26. Flow diagram for spring-mass system.

There is a 90 degree phase difference between the two. That is, the mass comes to a momentary stop when the displacement is at its maximum value. This is shown by the diagram in Fig. 27.
Notice that we have managed to program the analogue
computer to solve the differential equation and produce the solution without having any mathematical knowledge on the solution of differential equations. The only knowledge needed is to be able to apply Newton's Law of Motion. This is one of the great advantages of an analogue computer.

DAMPING EFFECTS

Damping is caused by air resistance or electrical resistance. This form of damping is called viscous damping in mechanical systems and is proportional to the velocity.

Viscous resistance is sometimes unwanted. For example, it forces us to burn fuel continuously to drive cars or to propel aeroplanes through the air. Spacecraft travelling in empty space do not have to do this, although they have to burn fuel to decelerate

In other cases, we find damping very useful. Mechanical vibration is one of these cases, where damping helps to reduce unwanted and dangerous vibrations. Without it, motor cars would provide a very rough ride. Representation of mechanical and electrical damped systems is shown in Fig. 28.
In the mechanical system, damping is provided by a dash pot which is full of oil. This system resembles very closely the suspension system of a motor car.
voltage socket carrying +15 V . The diagrams in Fig. 30 and Fig. 31 show what results to expect when impulse and step forcing functions are applied.

Turn the dial of potentiometer P1 to select various damping values and observe the results. At a particular value of damping the output reaches the final value with no oscillation and at the shortest possible time. This value is called Critical Damping.

One application of the above is in the construction of analogue measuring instruments, like moving coil meters, etc. The input of such instruments is usually a step function and the needle is damped to a value very near the critical damping value so that the meter can be read with the minimum of delay.

Fig.28. Mechanical and electrical systems with damping.

CRACKING THE ATOM

The ATOM is a powerful microcontroller (MCU) which can be programmed in BASIC. It is a customised variant of Microchip, s PIC16F876 and offers powerful commands enabling the program-

The following equation applies to the mechanical system:

$$
F=m a+C v+K d
$$

where C is the viscous damping factor.
The equivalent flow diagram is shown in Fig. 29.

Connect the program on the patch panel and run it. You can try various forcing functions (F), such as impulse, step, sinusoidal, etc. The impulse function can be achieved by momentarily touching the wire connected to the input of A1 on a reference
mer to carry out operations which would be difficult to achieve in PIC Assembly language, such as floating point mathematical operations. With ATOM BASIC one can perform 32-bit multiplication and division with real numbers up to a maximum value of $4,294,967,295$, and this can be done in one line of code.

ATOM BASIC can handle bits, nibbles (4-bit), bytes, words (16-bit), and long values (32-bit), binary, hexadecimal, decimal, integer and floating point mathematical operations. The programmer is offered the usual BASIC facilities such

Fig.29. Flow diagram for the damped system.

Fig.30. The effect of the impulse function.

Fig.31. The effect of the step function.
as arithmetic and logical operations, subroutines, arrays, etc. as well as specialised commands which can control servo and stepper motors, produce sound, etc.

The ATOM retains the 384 bytes of RAM and 8K of FLASH program space of the fundamental PIC16F876. It has a built in 5 V regulator, a serial port for in-circuit programming and data communication, and an analogue-to-digital converter (ADC).

To program the ATOM, first install the ATOM software which is supplied on a CD-ROM when you buy the chip, or which can be downloaded from the BASIC MICRO manufacturer's internet site at www.basicmicro.com. The software enables the programmer to write, compile, load and run programs under an Integrated Development Environment (IDE).

If the software is downloaded, doubleclick the .EXE application and it will automatically unzip. Then double-click the setup.exe file, and follow the on-screen prompts.

If the software is installed from the CDROM, insert it into your computer. If autorun is enabled the installer menu will appear, select your software and the installation process will begin automatically. Restart your computer after the installation is complete.

Start the software and spend a while reading the getting started section of the manual and familiarise yourself with the IDE. Understanding all the features of the IDE will make it easier to use the ATOM more efficiently.

Before you program the microcontroller, connect the Hybrid Computer's RS232 output socket to a vacant serial COM port on your PC, using an appropriate cable. Usually COM2 will be available.

FIRST ATOM PROGRAM

To enter and run your first ATOM program, follow these steps:

1. Run the ATOM software.
2. Click the Build button at the bottom of the screen (see Fig.32).
3. Select File, New, Mbasic file, enter file name, and Save.
4. Enter the following program: main
debug ["Hello"]
pause 100
goto main
end
5. Save this program with any name of your choosing.
6. Configure the COM port by selecting Tools, System setup, COM2.
7. Switch the Hybrid Computer on and place toggle switch S5 to Program.
8. Click on the Debug button at the top left corner of screen.
9. Wait until the program is automatically compiled and loaded into the ATOM.
10. Click the Connect button, then Animate or Run to run the program.

You should get the word "Hello" repeatedly displayed in the output window. The command debug instructs the ATOM to display the "Hello", and the pause $\mathbf{1 0 0}$ instruction to wait 100 ms before executing the next instruction, to again repeat "Hello".

If this program works successfully then it can be assumed that the ATOM is operating correctly and you can proceed to more useful programming.

RS232 SERIAL TESTING

The following program is a test for the Hybrid Computer's ability to communicate with your PC via the RS232 serial link.

Main
serout s_out,i9600,["hello"]
pause 100
goto main
end
This is almost the same program we used before, but this time the serout command outputs the data from the Hybrid Computer's serial port at a baud rate of 9600 bits per second.

This time do not click on the Debug button as the debug mode does not work with the serout command. Click on Program instead, to enter the routine that compiles the program and loads it into the program area of the ATOM.

When the program has been loaded into the ATOM, switch S5 to Run, click on Terminal1 at the bottom of the screen, configure the port to COM2, 9600 bits per second, no parity, no flow control, echo, and click Connect. You should see the word "hello" repeated every 100 ms .

To make sure that the data arrives correctly and can be read by an independent program, minimise the PC's Basic Micro software window, and click the Windows Start button, then select programs, accessories, communications, hyperterminal.

This is a program which is available with Windows and can be used to read serial data. Configure the hyperterminal to Connect using: direct from COM2. Click Configure and set the port configuration to 9600 bits/s, 8 data bits, no parity, 1 stop bit, and no flow control. Then click on Advanced and disable the Use FIFO buffers and click OK. Then click Connect and see if the word "hello" comes through.

Fig.32. The ATOM software Integrated Development Environment screen.

When finished click disconnect and go into the properties again to return the properties to default. If you fail to do this, you will not be able to reprogram the ATOM because the programming software uses the same COM2 port to send and receive program information.

ADC TESTING

The ATOM has the capability to convert analogue signals to digital values. This is a very useful system to have in a hybrid computer as the two parts of the computer cannot communicate with each other unless the information is converted from one system to the other.
One point to bear in mind here is that the ATOM microcontroller operates on a supply voltage of +5 V whereas the analogue computer works with $\pm 15 \mathrm{~V}$. The analogue voltage to be converted to digital must be restricted to values between 0 V and +5 V . An application of a voltage outside this range on an ADC pin of the ATOM may cause damage to the system.

This may seem very restrictive but there are ways to get round the problem by scaling the input signals, as we shall explain later. For the moment set up the program in Fig. 33 on the analogue computer and connect to the ATOM's ADC pin AX0.

Adjust the dial of the potentiometer P1 to give an output of -5 V maximum. Once adjusted do not touch the dial of P1 while the program is running. The -5 V signal is inverted by A1 and P8 is used to vary the signal value from 0 V to 5 V . This way there is no danger of an inadvertent movement of
the dial of the potentiometer to present the ADC pin with a voltage outside the range of 0 V to +5 V .

Enter the following ATOM program.
;program to convert analogue value to digital and transmit it to PC
;variable definitions
value VAR byte
;A/D sampling definition
clk con 2
;main program
main
;A/D pin AX0, right justified adin AX0,CLK,AD_RON,value ;send value to PC serout s_out,i9600,[value] pause 100 goto main

end

Do not use DEBUG to run the program as this mode does not work with the adin command. Click on Program to compile and load the program in the ATOM, ensuring than when you do this the toggle switch on the hybrid computer is switched to Program. When you run the program switch back to RUN. You can either set up Terminal 1 to observe the results or use the Hyperterminal program as done before.

While the program is running turn the dial of the potentiometer to vary the analogue value. You will find that as the variable Value was declared as a byte the analogue value of 0 V to 5 V is converted to a digital value between 0 and 255 decimal and displayed as the corresponding character of the ASCII code.

Fig.33. ADC setup program.

ATOM CONTROL

Set up the initial conditions program for the analogue computer, given earlier in Fig.23. There we used Manual Hold and Manual Reset to freeze the calculation and reset the analogue computer. We are now going to use the ATOM microcontroller to control the operations of Hold and Reset under program control.

Enter the following ATOM program and use Program to compile and load it into the chip.
;program to test auto Hold/Reset
hold var byte
reset var byte
;initialise variables, 1 ATOM pin P1, 0 is pin P0
hold=1
reset=0
begin:
;place computer in reset and wait 3 seconds high hold
high reset
pause 3000
;place the computer in compute mode, and execute for 5 seconds
low reset
low hold
pause 5000
;repeat operation
goto begin
end
Before you run the program connect ATOM socket P0 to the MODE Reset socket, and socket P1 to the MODE Hold socket. When the program is run you should hear the relays click when the computer is placed in the Reset and Hold modes. When the computer is in the Hold/Reset mode the amplifier output will take its initial condition value.

AUDIO CIRCUIT TESTING

ATOM BASIC has commands to produce sounds, and even music. The following is a very simple program to produce some sounds to test the audio circuit.
begin:
;play 2 notes out of pins p1 \& p2 of duration 1 s and 2 s
sound2 p1\p2,[1000\2500\3500, 2000\4500\6500] goto begin
end
Before you run this program connect ATOM sockets P1 and P2 to the two audio sockets.

FLIGHT SIMULATION

The flight of an object is described mathematically by differential equations, and these equations can be solved easily and efficiently by the analogue computer. To give an example of how it can be used as a flight simulator, we get the analogue computer to solve the equations, transmit the velocity of the aircraft to the PC and program the PC to produce the graphics and animation.

Note that we select to transmit the speed and not the height of the aircraft as the voltage range of the analogue computer would not be sufficient to represent the range of height of flight envisaged. A Harrier Jump Jet in vertical flight has two forces acting on it, its weight (mg) as a

Fig.34. Flow diagram for the Harrier Jump Jet simulator.
downwards force, and the engine thrust (T) as an upwards force.
The equation of motion according to Newton is:

$$
T-m g=m \times a
$$

(force $=$ mass \times acceleration $)$
where:
$T=$ engine thrust
$m g=$ aircraft weight
$m=$ mass
$a=$ acceleration
The analogue computer program in Fig. 34 can solve this equation.

Amplifier A1 integrates $T / m-g$, which is the acceleration of the aircraft and outputs $-v$, which is the velocity inverted. Amplifier A2 integrates the inverted velocity to produce the altitude of the aircraft. The other two amplifiers and potentiometers are necessary to scale the velocity and present it to ADC pin AX0 of the ATOM, in the range 0 V to +5 V .

The output of amplifier A1 can swing between -15 V and +15 V . Potentiometer P3 divides this output by six (value is now between $\pm 2.5 \mathrm{~V}$), and applies this signal to the input of amplifier A3. Amplifier A4 and potentiometer P 4 are used to produce a reference voltage of -2.5 V which is added to the signal at the other input of A3.

You can see now that as A3 also inverts the signals the output of A 3 is in the range that we require, i.e. 0 V to 5 V . The ATOM now converts the analogue signal to a digital value and transmits it through the serial port to the PC for processing. The PC program can now take this value and scale it back to the original value, by subtracting 2.5 and multiplying by 6 .

To run this program, complete the wiring on the patch panel and write the following ATOM program.
;program to convert analogue speed to digital and transmit it to PC
;variable definitions
speed VAR byte
;A/D sampling definition clk con 2
;main program main
;A/D pin AX0, right justified adin AX0,CLK,AD_RON,speed ;send value to PC serout s_out,i9600,[speed] goto main
end
For the graphics and animation now use a Visual Basic program that has been specially written to work as follows:

Fig.35. Harrier Jump Jet setup program.

The initial PC screen (Fig.35) shows a landscape with mountains, a cloudy sky and the Harrier on the ground near the control tower. As we apply power to the engines the aircraft takes off vertically and moves up the screen until it reaches a point three quarters of the way up.
At this point and if the aircraft is still gaining altitude, the picture of the aircraft remains stationary and the background picture begins to move down giving the impression of movement of the aircraft. If the thrust of the engines is reduced, the reverse movements occur, with the aircraft moving down until it lands.

The representation of the initial screen picture in Fig. 35 also includes an animated instrument panel showing speed, height and other information.

This program is supplied with this project's software. With very little code, a realistic flight simulator has been produced, which communicates with the Hybrid Computer for input information, and which produces graphics with animation
The program is "standalone" and does not need VB itself to be loaded on the PC. The program's source code is included for those who have a suitable version of VB which can handle serial communications and wish to experiment.
Before running the program, connect the patch panel, connect the serial cable to the PC's COM port, switch the Hybrid Computer on, adjust potentiometer P1 to give a high enough thrust for take off, and click START and ENGINES ON. After take off, adjust P1 to gain height, hover, and finally to land.

Try to make a smooth landing as you will receive a landing report. At all times the instrument panel will display information about the altitude and speed of the aircraft.
Just for comparison, included with the software is a purely digital version of the same program which does not need the Hybrid Computer to work. All the calculations are done by the PC program. You can download and run this program on your PC before you build your Hybrid Computer, to get a taste of what to expect.
To operate this program after double clicking on the file, click START and ENGINES ON, and apply thrust by pressing the numeric keys (0 to 9). Keying 9 gives maximum thrust whereas 0 gives no thrust. A value around 4 to 5 achieves hover.

ADDITIONAL CONSIDERATIONS

It was mentioned previously that analogue computers have the disadvantage of a limited voltage range of operation, in our case $\pm 15 \mathrm{~V}$. Had we decided, in the Harrier example, to transmit the height to the PC for processing, then we would be limited to a flight from ground to an altitude of 30 m if we assume 1 V to represent one metre in height.
This problem was avoided by transmitting the speed and letting the PC work out the height. This way +15 V represents a speed of $54,000 \mathrm{~km} /$ hour (more than
enough range!), if we assume 1 V to be equal to $1 \mathrm{~m} / \mathrm{s}$.

There is another solution to the problem of limited voltage range which is called Amplitude Scaling. This involves working out additional multiplication factors which are applied to the inputs of amplifiers.
For example, assume for convenience that our voltage range is $\pm 10 \mathrm{~V}$, and that we wanted to investigate the flight of the Harrier up to a height of 1000 m . We need, therefore, to apply a scale factor of 10:1000 or 1:100, i.e. 0.01. Similar scale factors are worked out for the velocity and acceleration, say $0 \cdot 2$. The equation of motion now becomes:

$$
0.2 \times a=0.2 \times\left(\frac{T}{m}-g\right)
$$

Another consideration which crops up with analogue computers is the need for time scaling, because the solution of differential equations may extend over periods of time ranging from microseconds to many hours. Apart from the fact that it is not convenient to record results that occur within a split second, or results that take many hours to produce, errors occur at high speeds (or frequencies), like phase shifts in computing elements and measuring instruments. Also, at very low speeds, error voltages tend to build up when integrated. Time scaling involves reducing or increasing the gain of Integrators. Time is not involved in the operation of Adders.

SPECIAL TECHNIQUES

Many special circuits and techniques are also used with analogue computers. Some of these involve the use of diode shaping circuits to produce non-linear functions. In physical systems we often find such effects as backlash, Coulomb or dry friction, dead space, etc. Expanding on these topics, though, is beyond the scope of this article.

Another useful unit used with analogue computers is the analogue multiplier which is capable of multiplying two variables. Four quadrant multiplier chips are readily available, but this too is beyond the scope of this article.

The EPE Hybrid Computer is a very powerful and versatile tool. As the flight simulator program shows, the programmer can get both aspects of the system, the analogue and
the digital, to work together for best results Moreover, the machine is a great development tool, thanks to the powerful on-board ATOM microcontroller. The ease with which one can write and load programs is a great bonus. We are sure electronics enthusiasts will find many uses for this design.

Petros Kronis is the Engineering Science Teacher at the A' Technical School, Limassol, Cyprus.

RESOURCES

The VB6 software for this project is available for free download from the $E P E$ ftp site, or on CD-ROM (for which a charge applies) from the $E P E$ Editorial office, see the EPE PCB Service page for details. Software for the ATOM can be supplied on CD-ROM when you buy this microcontroller (see this month's Shoptalk page for details) or can be downloaded from www.basicmicro.com.

SUGGESTED BOOKS

Introduction to Analogue Computers, Technical Education \& Management Inc., Foulsham. ISBN 05720027895.

Introduction to Electronic Analogue Computers, C. A. A. Wass, Kenneth Charles Garner, Pergamon Press. ISBN 0080110711.

Design and Use of Electronic Analogue Computers, C. P. Gilbert, Chapman \& Hall. ISBN 0412074605.

Analogue and Hybrid Computers, I. V. Borsky, J. Matyas, Iliffe. ISBN 0592017079.

Analogue Computers, Michael Brand, Timothy Eduard Brand, E. Arnold. ISBN 0173122552.

INTERNET LINKS

From the internet and using a search engine such as www.google.com, type the words "analogue computer" and search to find a lot of information
www.science.uva.ul/faculteit/ museum/analog computers/ gives details of an analogue computer aircraft simulator at the Royal Aircraft Establishment.
www.dcoward.best.vwh.nct is an analogue computer museum with pictures of various machines

Please Note: Part 1 Comp. List, the OPA177 is a single precision op.amp i.c.

NOTE: ALL PRICES INCLUDE UK POSTAGE

FREE Electronics Hobbyist Compendium book with Teach-In 2000 CD-ROM

EPE TEACH-IN 2000 CD-ROM

The whole of the 12-part Teach-In 2000 series by John Becker (published in EPE Nov '99 to Oct 2000) is now available on CD-ROM. Plus the Teach-In 2000 interactive software covering all aspects of the series and Alan Winstanley's Basic Soldering Guide (including illustrations and Desoldering).
Teach-In 2000 covers all the basic principles of electronics from Ohm's Law to Displays, including Op.Amps, logic Gates etc. Each part has its own section on the interactive software where you can also change component values in the various on-screen demonstration circuits
The series gives a hands-on approach to electronics with numerous breadboard circuits to try out, plus a simple computer interface which allows a PC to be used as

ONLY £12.45 including VAT and $p \& p$

Compuring

WINDOWS XP EXPLAINED

. you want to know. wha to do next when confronted with Microsoff's Windows XP screen, then this book is for you. It applies to both the Professional and Home editions.
The book was written with the non-expert, busy person in mind. It explains what hardware requirements you need in order to run Windows XP successfully, and gives an overview of the Windows XP environment.
The book explains: How to manipulate Windows, and how to use the Control Panel to add or change your printer, and control your display; How to control information using WordPad, Notepad and Paint, and how to use the Clpboard fachew to be in control of your filing system using Windows Explorer and My Computer; How to control printers, fonts, characters, multimedia and images, and how to add hardware and software to your system; How to configure your system to communicate with the outside world, and use Outlook Express for all your email requirements; How to use the Windows Media Player 8 to play your CDs, burn CDs with your favourite tracks, use the Radio Tuner, transfer your videos to your PC, and how to use the Sound Recorder and Movie Maker; How to use the System Tools to restore your system to a previously working state, using Microsoft's Website to update your Windows set-up, how to clean up, defragment and scan your hard disk, and how to backup and restore your data; How to successfully transfer text from those old but cherished MS-DOS programs.
268 pages \quad Order code BP514 $\quad £ 7.99$
INTRODUCING ROBOTICS WITH LEGO MINDSTORMS Robert Penfold
Shows the reader how to build a variety of increasingly sophisticated computer controlled robots using the brillant Lego Mindstorms Robotic Invention System (RIS) mechanics needed to construct strong and efficient robots using the various "click-together" components supplied in the basic RIS kit. Explains in simple terms how the "brain" of the robot may be programmed on screen using a PC and "zapped" to the robot over an infra-red link. Also, shows how a more sophisticated Windows programming language such as Visual BASIC may be used to control the robots.
Detailed building and programming instructions provided, including numerous step-by-step photographs.

288 pages - large format Order code BP901 £14.99

MORE ADVANCED ROBOTICS WITH LEGO

MINDSTORMS - Robert Penfold

Shows the reader brilliant Lego Mindstorms Robotic Invention System (RIS) by using Lego's own accessories and some simple home constructed units. You will be able to build robots hat can provide you with waiter service when you clap your hands, perform tricks, 'see' and avoid objects by using 'bats radar', or accurately follow a line marked on
the floor. Learn to use additional types of sensors includ the floor. Learn to use additional types of sensors includ also explore the possibilities provided by using an addi tional (third) motor. For the less experienced, RCX code programs accompany most of the featured robots However, the more adventurous reader is also shown how to write programs using Microsoft's VisualBASIC running with the ActiveX control (Spirit.OCX) that is pro vided with the RIS kit.
Detailed building instructions are provided for the fea tured robots, including numerous step-by-step pho tographs. The designs include rover vehicles, a virtua pel, ar conscious robot that will try to grab objects of colour conscious robot that will try to grab objects of specific colour

298 pages \quad Order code BP902 14.99

PIC YOUR PERSONAL INTRODUCTORY COURSE

SECOND EDITION John Morton
Discover the potential of the PIC micro controller through graded projects - this book could revolutionise your electronics construction work
A uniquely concise and practical guide to getting up and running with the PIC Microcontroller. The PIC is one of the most popular of the microcontrollers that are transforming electronic project work and produc design.
Assuming no prior knowledge of microcontrollers and introducing the PICs capabilities through simple projects this book is ideal for use in schools and colleges. It is the electronics enthusiasts. The step-by-step explanations make it ideal for self-study too- this is not a rextana - you start work with the PIC straight away.

The revised second edition covers the popular repro grammable EEPROM PICs: P16C84/16F84 as well as the P54 and P71 families.

270 pages Order code NE36

£13.99

INTRODUCTION TO MICROPROCESSORS

If you are, or soon will be, involved in the use o microprocessors, this practical introduction is essentia reading. This book provides a thoroughly readable intro duction to microprocessors. assuming no previous ical backe ound it is suitable for students, technicians engineers and hobbyists, and covers the full range of modern microprocessors.
After a thorough introduction to the subject, ideas ar developed progressively in a well-structured format A technical terms are carefully introduced and subject which have proved difficult, for example 2's comple ment, are clearly explained. John Crisp covers the com plete range of microprocessors from the popular 4-bi and 8 -bit designs to today's super-fast 32 -bit and 64 -bit versions that power PCs and engine managemen systems etc.
222 pages
$£ 18.99$

Contents: Some basic concepts; Projects with switches, LEDs, relays and diodes; Transistors; Power supplies; Op.amp projects; Further op.amp circuits; Logic gates; Real logic circuits; Logic gate multivibrators; The 555 timer; Flip-flops, counters and shift registers; Adders, comparators and multiplexers; Field effect transistors; Thyristors, triacs and diacs; Constructing your circuit; Index.

227 pages
 Temporarily out of print

DISCOVERING ELECTRONIC CLOCKS

W. D. Phillips

This is a whole book about designing and making electronic clocks. You start by connecting HIGH and LOW logic signals to logic gates. You find out about and then build and est bistables, crystal-controlled astables, counters, decoders and displays. All of these subsystems are carefully explained, with practical work supported by easy to follow prototype board layouts.
Full constructional details, including circuit diagrams and a printed circuit board pattern, are given for a digital electronic clock. The circuit for the First Clock is modified and developed to produce additional designs which include a Big Digit Clock, Binary Clock, Linear Clock, Andrew's Clock (with a semi-analogue display), and a Circles Clock. All of these designs are unusual and distinctive.
This is an ideal resource for project work in GCSE Design and Technology: Electronics Product, and for project work in AS-Level and A-Level Electronics and Technology.
194 pages, A4 spiral bound Order code DEP1 £17.50

DOMESTIC SECURITY SYSTEMS

A. L. Brown

This book shows you how, with common sense and basic do-it-yourself skills, you can protect your home. It also gives tips and ideas which will help you to maintain and improve your home security, even if you already have an alarm. Every circuit in this book is clearly described and illustrated, and contains components that are easy to source. Advice and guidance are based on the real experience of the author who is an alarm installer, and the designs themselves have been rigorously put to use on some of the most crime-ridden streets in the world.
The designs include all elements, including sensors, -detectors, alarms, controls, lights, video and door entry systems. Chapters cover installation, testing, maintenance and upgrading.
192 pages $£ 15.99$

MICROCONTROLLER COOKBOOK

Mike James

The practical solutions to real problems shown in this cookbook provide the basis to make PIC and 8051 devices really work. Capabilities of the variants are examined, and ways ernance these ace show. A survy ing models devices, and a description of programming models, lead on ffers introduction thill offers an to make the most of microcontrolers. rienced, to make the most of microcontrollers.
240 pages \quad Order code NE26 21.99
A BEGINNER'S GUIDE TO TTL DIGITAL ICs
R. A. Penfold

This book first covers the basics of simple logic circuits in general, and then progresses to specific TTL logic integrated circuits. The devices covered include gates, oscillaors, timers, flip/flops, dividers, and decoder circuits. Some practical circuits are used to illustrate the use of TTL devices in the "real world"
142 pages \quad Order code BP332 5.4
PRACTICAL ELECTRONICS CALCULATIONS AND
FORMULAE
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M. Bridges the gap between complicated technical theory, and "cut-and-tried" methods which may bring success in design but leave the experimenter unfulfilled. A strong practical bias - tedious and higher mathematics have been avoided where possible and many tables have been included.
The book is divided into six basic sections: Units and Constants, Direct-Current Circuits, Passive Components, Alternating-Current Circuits, Networks and Theorems, Measurements.
256 pages Order code BP53
$£ 5.49$

> All Prices include UK P\&P

Testing Theory ond Reference

Bebop To The Boolean Boogie

By Clive (call me Max) Maxfield Specially imported by EPE -
\section*{Excellent value}

An Unconventional Guide to Electronics Fundamentals, Components and Processes

This book gives the "big picture" of digital electronics. This indepth, highly readable, up-to-the-minute guide shows you how electronic devices work and how they're made. You'll discover how transistors operate, how printed circuit boards are fabricated, and what the innards of memory ICs look like. You'll also
 gain a working knowledge of Boolean Algebra and Karnaugh Maps, and understand what Reed-Muller logic is and how it's used. And there's much, MUCH more (including a recipe for a truly great seafood gumbo!), Hundreds of carefully drawn illustrations clearly show the important points of each topic. The author's tongue-in-cheek British humor makes it a delight to read, but this is a REAL technical book, extremely detailed and accurate. A great reference for your own shelf, and also an ideal gift for a friend or family member who wants to understand what it is you do all day
470 pages - large format
Order code BEB1
£26.95

BEBOP BYTES BACK (and the Beboputer Computer Simulator)
 CD-ROM
 Clive (Max) Maxfield and Alvin Brown

This follow-on to Bebop to the Boolean Boogie is a multimedia extravaganza of information about how computers work. It picks up where "Bebop I" left off, guiding you through the fascinating world of computer design . . . and you'll have a few chuckles, if not belly laughs, along the way. In addition to over 200 megabytes of mega-cool multimedia, the CD-ROM contains a virtual microcomputer, simulating the motherboard and
 standard computer peripherals in an extremely
 realistic manner. In addition to a wealth of technical information, myriad nuggets of trivia, and hundreds of carefully drawn illustrations, the CD-ROM contains a set of lab experiments for the virtual microcomputer that let you recreate the experiences of early computer pioneers. If you're the slightest bit interested in the inner workings of computers, then don't dare to miss this!
Over 800 pages in Adobe Acrobat format Order code BEB2 CD-ROM £21.95
DIGITAL ELECTRONICS - A PRACTICAL APPROACH
With FREE Software: Number One Systems - EASY-PC Professional XM and Pulsar (Limited Functionality)

SOFTWAR Richard Monk
Covers binary arithmetic, Boolean algebra and logic gates, combination logic, sequential logic including the design and construction of asynchronous and synchronous circuits and register circuits. Together with a considerable practical content plus the additional attraction of its close association with computer-aided design including the FREE software
There is a 'blow-by-blow' guide to the use of EASY-PC Professional XM (a schematic drawing and printed circuit board design computer package). The guide also conducts the reader through logic circuit simulation using Pulsar software. Chapters on p.c.b. physics and p.c.b. production techniques make the book unique, and with its host of project ideas make it an ideal companion for the integrative assignment and common skills components required by BTEC and the key skills demanded by GNVQ. The principal aim of the book is to provide a straightforward approach to the understanding of digital electronics.
Those who prefer the 'Teach-In' approach or would rather experiment with some simple circuits should find the book's final chapters on printed circuit board production and project ideas especially useful. 250 pages

Order code NE28
OSCILLOSCOPES - FIFTH EDITION
lan Hickman
Oscilloscopes are essential tools for checking circuit operation and diagnosing faults, and an enormous range of models are available.
This handy guide to oscilloscopes is essential reading for anyone who has to use a 'scope for their work or hobby; electronics designers, technicians, anyone in industry involved in test and measurement, electronics enthusiasts ... Ian Hickman's review of all the latest types of 'scope currently available will prove especially useful for anyone planning to buy - or even build an oscilloscope.
The contents include a description of the basic oscillscope; Advanced realtime oscilloscope; Accessories; Using oscilloscopes; Sampling oscilloscopes; Digital storage oscilloscopes; Oscilloscopes for special purposes; How oscillocopes work (1): the CRT; How oscilloscopes work (2): circuitry; How oscilloscopes work (3): storage CRTs; plus a listing of Oscilloscope manufacturers and suppliers.
288 pages

EDA - WHERE ELECTRONICS BEGINS

ON SALE 50\% OFF

 By Clive "Max" Maxfield and Kuhoo Goyal EdsonEDA, which stands for electronic design automation, refers to the software tools (computer programs) used to design electronic products. EDA actually encompasses a tremendous variety of tools and concepts. The aim of this book is to take a 30,000 -foot view of the EDA world. To paint a "big picture" that introduces some of the most important EDA tools and describes how they are used to create integrated circuits, circuit boards and electronic systems. To show you how everything fits together without making you want to bang your head against the nearest wall.
"Did you ever wonder how the circuit boards and silicon chips inside your personal computer or cell phone were designed? This book walks you through the process of designing a city on an alien planet and compares it to designing an electronic system. The result is a fun, light-hearted and entertaining way to learn about one of the most important - and least understood - industries on this planet."

John Barr, Managing Director, Robertson Stephens
SPECIALLY IMPORTED BY EPE - EXCELLENT VALUE £29.95 98 pages - Large format Order code EDA1 £14.95 while stocks last

DIGITAL GATES AND FLIP-FLOPS

lan R. Sinclair
This book, intended for enthusiasts, students and technicians, seeks to establish a firm foundation in digital electronics by treating the topics of gates and flip-flops thoroughly and from the beginning.
Topics such as Boolean algebra and Karnaugh mapping are explainend, demonstrated and used extensively, and more attention is paid to the subject of synchronous counters than to the simple but less important ripple counters. No background other than a basic knowledge of electronics is assumed, and the more theoretical topics are explained from the beginning, as also are many working practices. The book concludes with an explanation of microprocessor techniques as applied to digital logic.
200 pages
Order code PC106
$£ 9.95$

UNDERSTANDING ELECTRONIC CONTROL SYSTEMS
Owen Bishop
Owen Bishop has produced a concise, readable text to introduce a wide range of students, technicians and professionals to an important area of electronics. Control is a highly mathematical subject, but here maths is kept to a minimum, with flow charts to illustrate principles and techniques instead of equations.
Cutting edge topics such as microcontrollers, neural networks and fuzzy control are all here, making this an ideal refresher course for those working in Industry. Basic principles, control algorithms and hardwired control systems are also fully covered so the resulting book is a comprehensive text and well suited to college courses or background reading for university students.
The text is supported by questions under the headings Keeping Up and Test Your Knowledge so that the reader can develop a sound understanding and the ability to apply the techniques they are learning. 228 pages
£17.99
HOW ELECTRONIC THINGS WORK - AND WHAT TO DO WHENTHEY DON'T Robert Goodman
You never again have to be flummoxed, flustered or taken for a ride by a piece of electronics equipment. With this fully illustrated, simple-to-use guide, you will get a grasp on the workings of the electronic world that surrounds you - and even learn to make your own repairs.

You don't need any technical experience. This book gives you: Clear explanations of how things work, written in everyday language. Easy-to-follow, illustrated instructions on using test equipment to diagnose problems. Guidelines to help you decide for or against professional repair. Tips on protecting your expensive equipment from lightning and other electrical damage. Lubrication and maintenance suggestions.
Covers: colour TVs, VCRs, radios, PCs, CD players, printers, telephones, monitors, camcorders, satellite dishes, and much more!
394 pages
Order code MGH3
$£ 21.99$

The books listed have been selected by Everyday Practical Electronics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order direct to your door. Full ordering details are given on the last book page.

FOR A FURTHER SELECTION OF BOOKS SEE THE NEXT TWO ISSUES OF EPE

All prices include UK postage

Circuite อnd Design

PRACTICAL ELECTRONIC FILTERS

Owen Bishop
This book deals with the subject in a non-mathematical way. It reviews the main types of filter, explaining in simple terms how each type works and how it is used.
The book also presents a dozen filter-based projects with applications in and around the home or in the constructor's workshop. These include a number of audio projects such as a rythm sequencer and a multi-voiced electronic organ.
Concluding the book is a practical step-by-step guide to designing simple filters for a wide range of purposes, with circuit diagrams and worked examples.
88 pages Order code BP299
$£ 5.49$

PREAMPLIFIER AND FILTER CIRCUITS

R. A. Penfold

This book provides circuits and background information for a range of preamplifiers, plus tone controls, filters, mixers, etc The use of modern low noise operational amplifiers and a specialist high performance audio preamplifier i.c. results in circuits that have excellent performance, but which are still quite simple. All the circuits featured can be built at quite low cost (just a few pounds in most cases). The preamplifier circuits featured include: Microphone preamplifiers (low impedance, high impedance, and crystal). Magnetic cartridge pick-up preamplifiers with R.I.A.A. equalisation. Crystal/ceramic pick-up preamplifier. Guitar pick-up preamplifier. Tape head preamplifier (for use with compact cassette systems).
Other circuits include: Audio limiter to prevent overloading of power amplifiers. Passive tone controls. Active loading of power amplifiers. Passive tone controls. Active and rumble filters. Loudness filter. Mixers. Volume and balance controls.

92 pages \quad Order code BP299 \quad £4.49

HOW TO USE OP.AMPS

E. A. Parr

This book has been written as a designer's guide covering many operational amplifiers, serving both as a source book of circuits and a reference book for design calculations. The approach has been made as non-mathematical as possible.
160 pages
Order code BP88
£4.49

CIRCUIT SOURCE BOOK 2

R. A. Penfold

This book will help you to create and experiment with your own electronic designs by combining and using the various standard "building blocks" circuits provided. Where applicable, advice on how to alter the circuit parameters is provided.
The circuits covered are mainly concerned with signal generation, power supplies, and digital electronics.
The topics covered in this book include: 555 oscillators; sinewave oscillators; function generators; CMOS oscillators; voltage controlled oscillators; radio frequency oscillators; 555 monostables; CMOS monostables; TTL monostables; precision long timers; power supply and regulator circuits; negative supply generators and voltage boosters; digital dividers; decoders, etc; counvoltage boosters; digital dividers; decoders, etc; coun-
ters and display drivers; D/A and A/D converters; optoisolators, flip/flops, noise generators, tone decoders, isolat
etc.

Over 170 circuits are provided, which it is hoped will be useful to all those involved in circuit design and application, be they professionals, students or hobbyists.
192 pages
Order code BP322
$£ 5.45$

RADIO BYGONES

We also carry a selection of books aimed at readers of $E P E s$ sister magazine on vintage radio Radio Bygones. These books include the Comprehensive Radio Valve Guides (five books with a Free copy of the Master Index) for just £15. Also Jonathan Hill's excellent Radio Radio, a comprehensive book with hundreds of photos depicting the development of the British wireless set up to the late 1960s.
The three volumes of our own Wireless For the Warrior by Louis Meulstee are also available. These are a technical history of radio communication equipment in the British Army from pre-war through to the 1960s.
For details see the shop on our UK web site at www.epemag.wimborne.co.uk or contact us for a list of Radio Bygones books.

ELECTRONIC PROJECTS FOR EXPERIMENTERS

R. A. Penfold

Many electronic hobbyists who have been pursuing their hobby for a number of years seem to suffer from the dreaded "seen it all before" syndrome. This book is fairly and squarely aimed at sufferers of this complaint, plus any other electronics enthusiasts who yearn to try something a bit different. No doubt many of the projects featured here have practical applications, but they are all worth a try for their interest value alone.

The subjects covered include:- Magnetic field detector, Basic Hall effect compass, Hall effect audio isolator, Voice scrambler/descrambler, Bat detector, Bat style echo loca tion, Noise cancelling, LED stroboscope, Infra-red "torch", Electronic breeze detector, Class D power amplifier, Strain gauge amplifier, Super hearing aid.
138 pages Order code BP371

ELECTRONIC PROJECT BUILDING FOR BEGINNERS

R. A. Penfold

This book is for complete beginners to electronic project building. It provides a complete introduction to the practical side of this fascinating hobby, including the following topics:

Component identification, and buying the right parts; resistor colour codes, capacitor value markings, etc; advice on buying the right tools for the job; soldering; making easy work of the hard wiring; construction methods, including stripboard, custom printed circuit boards, plain matrix boards, surface mount boards and wire-wrapping; finishing off, and adding panel labels; getting "problem" projects to work, including simple methods of fault-finding.
In fact everything you need to know in order to get started in this absorbing and creative hobby.
135 pages Order code BP392
$£ 5.49$

PRACTICAL FIBRE-OPTIC PROJECTS

R. A. Penfold

While fibre-optic cables may have potential advantages over ordinary electric cables, for the electronics
enthusiast it is probably their novelty value that makes them worthy of exploration. Fibre-optic cables provide an innovative interesting alternative to electric cables, but in most cases they also represent a practical approach to the problem. This book provides a number of tried and ested circuits for projects that utilize fibre-optic cables. The projects include:- Simple audio links, F.M. audio link, P.W.M. audio links, Simple d.c. links, P.W.M. d.c. link, P.W.M. motor speed control, RS232C data links, MIDI link, Loop alarms, R.P.M. meter.
All the components used in these designs are readily available, none of them require the constructor to take out a second mortgage.
132 pages \quad Order code BP374 45

ELECTRONIC MUSIC AND

MIDI PROJECTS

R. A. Penfold

Whether you wish to save money, boldly go where no musician has gone before, rekindle the pioneering spirit, or simply have fun building some electronic music gadgets, the designs featured in this book should suit your needs. The projects are all easy to build, and some are so simple that even complete beginners at electronic project construction can tackle them with ease. Stripboard layouts are provided for every project, together with a wiring diagram. The mechanical side of construction has largely been left to the individual constructors to sort out, simply because the vast majority of project builders prefer to do their own thing.
None of the designs requires the use of any test equipment in order to get them set up properly. Where any setting up is required, the procedures are very straightforward, and they are described in detail.
Projects covered: Simple MIDI tester, Message grabber, Byte grabber, THRU box, MIDI auto switcher, Auto/manual switcher, Manual switcher, MIDI patchbay, MIDI controlled switcher, MIDI lead tester, Program change pedal, Improved program change pedal, Basic mixer Stereo mixer, Electronic swell pedal, Metronome Analogue echo unit.
138 pages \quad Order code PC116

BOOK ORDERING DETAILS

All prices include UK postage. For postage to Europe (air) and the rest of the world (surface) please add $£ 2$ per book. For the rest of the world airmail add $£ 3$ per book. CD-ROM prices include VAT and/or postage to anywhere in the world. Send a PO, cheque, international money order ($£$ sterling only) made payable to Direct Book Service or card details, Visa, Mastercard, Amex, Diners Club or Switch to.

DIRECT BOOK SERVICE, WIMBORNE PUBLISHING LTD.,
408 WIMBORNE ROAD EAST, FERNDOWN, DORSET BH22 9ND.
Books are normally sent within seven days of receipt of order, but please allow 28 days for delivery - more for overseas orders. Please check price and availability (see latest issue of Everyday Practical Electronics) before ordering from old lists.

For a further selection of books see the next two issues of EPE.
Tel 01202873872 Fax 01202 874562. Email: dbs@epemag.wimborne.co.uk Order from our online shop at: www.epemag.wimborne.co.uk/shopdoor.htm

BOOK ORDER FORM

Full name:
Address

Post code:
Telephone No:

Signature:
\square I enclose cheque/PO payable to DIRECT BOOK SERVICE for $£$

Card Number ... Switch Issue No.

Please send book order codes:

Please continue on separate sheet of paper if necessary
If you do not wish to cut your magazine, send a letter or copy of this form

CONSTRUCTIONAL PROJECTS

ALARM, DOOR DEFENDER
ALARM, FREEZER
ALARM, PIC CONTROLLED INTRUDER
ALARM, PICKPOCKET
AMP, GUITAR PRACTICE
ANALYSER, PIC SPECTRUM
AUDIO CIRCUITS, SIMPLE
AUTOSWITCH, INFRA-RED
BATTERY TESTER
BATTLESHIPS, PIC-POCKET
BENCH POWER SUPPLY, VERSATILE
BIG-DIGIT DISPLAY, PIC
BIG-EARS BUGGY by Thomas Scarborough
BIOPIC HEARTBEAT MONITOR by John Becker
BOUNTY TREASURE HUNTER, EPE
BUGGY, BIG-EARS
CD PREAMPLIFIER, VINYL TO
CHARGE AND GO, SOLAR
CLOCK, PIC WORLD
CODE READER, EPE MORSE
COMBINATION LOCK, ROTARY
COMMUNICATOR, HEADSET
COMPUTER, EPE HYBRID
CONTROL, FREEBIRD GLIDER
CONTROLLED INTRUDER ALARM, PIC
CONTROLLER, MANUAL STEPPER MOTOR
CURRENT MONITOR, VERSATILE
DELAY TOUCH SWITCH, TIME
DICE MACHINE
DIGITAL I.C. TESTER by Joe Farr
DISPLAY, PIC BIG-DIGIT
DOOR DEFENDER by Steve Dellow

EGG TIMER

ELECTRIC GUITAR TUNER by Robert Penfold
ENIGMA, PIC MINI-
EPE BOUNTY TREASURE HUNTER by Thomas Scarborough
EPE HYBRID COMPUTER by Petros Kronis
EPE MORSE CODE READER by John Becker
EPE STYLOPIC by John Becker
FISH TANK MONITOR
FLASHER, FOREVER
FLASHER, VERSATILE PIC
FOREVER FLASHER by Thomas Scarborough
FREEBIRD GLIDER CONTROL by Mike Boyden
FREEZER ALARM by Humphrey Berridge
FREQUENCY STANDARD GENERATOR by Andy Flind
GENERATOR, FREQUENCY STANDARD
GLIDER CONTROL, FREEBIRD
GUITAR PRACTICE AMP by Bart Trepak
GUITAR TUNER, ELECTRIC
HEADSET COMMUNICATOR by Terry de Vaux-Balbirnie
HEARTBEAT MONITOR, BIOPIC
HT POWER SUPPLY by Robert Penfold
HYBRID COMPUTER, EPE
I.C. TESTER, DIGITAL

INDICATOR, WASHING READY
INFRA-RED AUTOSWITCH by Max Horsey
INTRUDER ALARM, PIC CONTROLLED
LAMP, WORLD
LOCK, ROTARY COMBINATION
408, 507

MAGICK MUSICK, PIC
MANUAL STEPPER MOTOR CONTROLLER by Thomas Scarborough 274 MAINS TRANSIENT TRACKER
METER, RH
METRONOME, TUNING FORK AND
MINI-ENIGMA, PIC
MK484 SHORTWAVE RADIO by Tom Merryfield
MONITOR, BIOPIC HEARTBEAT
MONITOR, VERSATILE CURRENT

SPECIAL SERIES

Lottery Predictor
One-second Crystal Clock
Pico Prizewinners
Precision UV Timer
Quiz Master
RF Data Spike Avoider
Smart Alarm Timer
Switched Mode L.E.D. Nightlight
Switch Mode Fan Regulator
Switch Mode Regulators
Switch Mode Regulators
Tape Tone Index Marker
Transistor/Diode Go/No-Go Checker
Velocity Detector
Walkman in a Car
Wien Oscillator
L116, 200, 290, 431, 507, 616, 725, 863
Car Battery Trickle Charger (I/U)
Digital I.C. Tester
Dog and Cat Scarer (I/U)
EPE Stylopic
L.E.D. Sequencer (IU)

Mains Failure Alarm
PIC Polywhatsit
PIC Spectrum Analyser
PIC Virus Zapper
Time Delay Touch Switch
Time Delay Touch Switch
Toolkit TK3
Using the PIC's PCLATH Command
Washing Ready Indicator
Wien Oscillator (I/U)
World Lamp
PRACTICALLY SPEAKING by Robert Penfold
30, 202, 335,
Cable and wiring requirements and types
522, 674, 830
202
Component identification, symbols and circuit translation
interpreting component codings
Obtaining a stock of components
Project construction
522
830
Using enclosures
335
TEACH-IN 2002 by lan Bell and Dave Chesmore
56, 128, 192,
3. Op.amps in Sensors, Humidity Sensors
4. Good Vibrations - Measuring Stress, Strain, Vibration
5. Strain, Accelerometers, Pressure Sensors
6. Magnetic Sensors, Interference, Noise
7. Comparators, Digital Optical Sensing, Noise
8. Filters, Actuators, Smoke and Gas Detection
9. Filters, Analogue-to-Digital Conversion, Sampling and

Nuclear Radiation Sensing
10. Advanced Sensors and Radio Telemetry Systems

25

863

290

616

507
116
116
200
290

REGULAR FEATURES

EDITORIAL $11,83,155,235,315,395,475,555,635,707,779,851$ NET WORK - THE INTERNET PAGE surfed by Alan Winstanley

NEWS plus reports by Barry Fox

READOUT addressed by John Becker
19, 91, 164, 243, 322, 403, 482,
563, 643, 714, 787, 859
45, 102, 181, 282, 353, 415, 495, 595, 671, 751, 818, 887

43, 116, 200, 290, 367, 431, 507 616, 651, 725, 823, 863

GENERAL FEATURES

ALTERNATIVE USES FOR TRANSISTORS by Ned Stephens
ELECTRONIC CIRCUITS \& COMPONENTS V2.0 CD-ROM
REVIEW by Terry de Vaux-Balbirnie
ELECTRONIC PAPER by lan Graham
ELECTRONIC PRINCIPLES V7. 1 REVIEW by Robert Penfold EVOLUTIONARY ELECTRONICS
by Chris MacLeod and Grant Maxwell
FLOWCODE FOR PICmicro and PIC DEVELOPMENT BOARD REVIEWS by Terry de Vaux-Balbirnie

LOGIC GATE INVERTER OSCILLATORS by George Hylton
684, 742
PROGRAMMING PIC INTERRUPTS by Malcolm Wiles
RUSSIAN SPACE SHUTTLE REVISITED by Barry Fox
USING SQUARE ROOTS WITH PICS by Peter Hemsley
USING THE PIC'S PCLATH COMMAND by John Waller USING TK3 WITH WINDOWS XP AND 2000 by Mark Jones

SPECIAL OFFERS AND SERVICES

ADVERTISERS INDEX
72, 144, 224, 304, 384, 464, 544, 624 696, 768, 840

BACK ISSUES many now on CD-ROM
40, 121, 190, 270, 350, 429 498, $575,663,740,807,884$

CD-ROMS FOR ELECTRONICS
52, 124, 204, 284, 364, 444 $524,604,676,748,820,892$
COLLECTING AND RESTORING VINTAGE RADIOS SUPPLEMENT by Paul Stenning
between pages 732/733
DIRECT BOOK SERVICE
66, 137, 216, 296, 380, 458, 536
617, 688, 760, 832, 904

ELECTRONICS MANUALS
ELECTRONICS VIDEOS
220, 230, 310, 390, 540,
620, 692, 764, 836, 846
178, 242, 378, 834
PRINTED CIRCUIT BOARD AND SOFTWARE SERVICE 69, 141, 219, 301, 379, 461, 539, 619, 691, 763, 835, 909

GIANT OP.AMP DATA CHART
between pages 264/265
TEACH-IN 2002 SPECIAL OFFER - PICO ADC-40
65
WCN SUPPLIES COMPONENT CATALOGUE
(UK issues only)
between pages 804/805

PCB SERVICE

Printed circuit boards for most recent EPE constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add £1 per board for airmail outside of Europe. Remittances should be sent to The PCB Service, Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872; Fax 01202874562 ; E-mail: orders@epemag.wimborne.co.uk. On-line Shop: www.epemag. wimborne.co.uk/shopdoor.htm. Cheques should be crossed and made payable to Everyday Practical Electronics (Payment in £ sterling only).
NOTE: While 95% of our boards are held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery - overseas readers allow extra if ordered by surface mail.

Back numbers or photostats of articles are available if required - see the Back
Issues page for details. We do not supply kits or components for Issues page for details. We do not supply kits or components for our projects.

Please check price and availability in the latest issue.
A number of older boards are listed on our website.
Boards can only be supplied on a payment with order basis.

PROJECT TITLE	Order Code	Cost
\star PIC Dual-Channel Virtual Scope \quad OCT '00	275	£5.15
Twinkling Star ${ }^{\text {DEC '00 }}$	276	£4.28
Festive Fader	277	£5.71
Motorists' Buzz-Box	278	£5.39
\star PICtogram	279	£4.91
\star PIC-Monitored Dual PSU-1 PSU	280	£4.75
Monitor Unit	281	£5.23
Static Field Detector (Multi-project PCB)	932	£3.00
Two-Way Intercom JAN '01	282	£4.76
UFO Detector and Event Recorder		
Magnetic Anomaly Detector	$283\}$	
Event Recorder	284 \} Set	$£ 6.19$
Audio Alarm \star Using PICs and Keypads Software only		-
Ice Alarm FEB '01	287	£4.60
\star Graphics L.C.D. Display with PICs (Supp)	288	£5.23
Using the LM3914-6 L.E.D. Bargraph Drivers Multi-purpose Main p.c.b.		
Multi-purpose Main p.c.b. Relay Control	$\left.\begin{array}{l} 289 \\ 290 \end{array}\right\} \text { Set }$	£7.14
L.E.D. Display	$291 \int \text { set }$	27.14
\star PC Audio Power Meter Software only	-	-
Doorbell Extender: Transmitter MAR '01	292	£4.20
Receiver	293	£4.60
Trans/Remote	294	£4.28
Rec./Relay	295	£4.92
EPE Snug-bug Heat Control for Pets APR '01	296	£6.50
Intruder Alarm Control Panel		
Main Board	297	£6.97
External Bell Unit	298	£4.76
Camcorder Mixer MAY '01	299	£6.34
\star PIC Graphics L.C.D. Scope	300	$£ 5.07$
Hosepipe Controller JUNE '01	301	$£ 5.14$
Magfield Monitor (Sensor Board)	302	£4.91
Dummy PIR Detector	303	£4.36
\star PIC16F87x Extended Memory Software only	-	-
Stereo/Surround Sound Amplifier JULY '01	304	£4.75
Perpetual Projects Uniboard-1 Solar-Powered Power Supply \& Voltage Reg.	305	£3.00
MSF Signal Repeater and Indicator		
Repeater Board	306	£4.75
Meter Board	307	£4.44
\star PIC to Printer Interface	308	£5.39
Lead/Acid Battery Charger AUG '01	309	£4.99
Shortwave Loop Aerial	310	$£ 5.07$
\star Digitimer - Main Board	311	£6.50
- R.F. Board	312	£4.36
Perpetual Projects Uniboard-2 L.E.D. Flasher - Double Door-Buzzer	305	£3.00
Perpetual Projects Uniboard-3 SEPT 01	305	£3.00
Loop Burglar Alarm, Touch-Switch Door-Light and Solar-Powered Rain Alarm		
L.E.D. Super Torches - Red Main	313 314 $\}$ Set	$£ 6.10$
- Display Red	314 J Set	£6.10
- White L.E.D.	315	£4.28
\star Sync Clock Driver	316	£5.94
\star Water Monitor	317	£4.91
Camcorder Power Supply ${ }^{\text {OCT }}$ '01	318	$£ 5.94$
PIC Toolkit Mk3	319	£8.24
Perpetual Projects Uniboard-4. Gate Sentinel, Solarpowered Bird Scarer and Solar-Powered Register	305	£3.00
Teach-In 2002 Power Supply NOV '01	320	£4.28
Lights Needed Alert	321	£5.39
Pitch Switch	322	£5.87
Capacitance Meter - Main Board (double-sided)	$\left.\begin{array}{l} 323 \\ 324 \end{array}\right\} \text { Set }$	£12.00
- Display Board (double-sided) \star „PIC Toolkit TK3 - Software only	324 Set	212.00
4-Channel Twinkling Lights DEC '01	325	$£ 6.82$
$\begin{array}{r} \text { Ghost Buster - Mic } \\ \text { - Main } \end{array}$	$\left.\begin{array}{l} 326 \\ 327 \end{array}\right\} S e t$	$£ 5.78$
\star PIC Polywhatsit - Digital	328	
- Analogue	329 \} Set	£7.61
Forever Flasher JAN '02	330	£4.44
Time Delay Touch Switch	331	£4.60
\star PIC Magick Musick	332	£5.87
Versatile Bench Power Supply	333	£5.71
\star PIC Spectrum Analyser FEB '02	334	£7.13
Versatile Current Monitor	335	£4.75
Guitar Practice Amp	336	£5.39

PROJECT TITLE	Order Code	Cost
\#PIC Virus Zapper MAR 02	337	£4.75
RH Meter	338	£4.28
\& PIC Mini-Enigma - Software only	-	-
\star Programming PIC Interrupts - Software only	-	-
\star PIC Controlled Intruder Alarm APR '02	339	$£ 6.50$
\star PIC Big Digit Display MAY '02	341	£6.02
Washing Ready Indicator	342	£4.75
Audio Circuits-1 - LM386N-1	343	£4.28
- TDA7052	344	£4.12
- TBA820M	345	£4.44
- LM380N	346	$£ 4.44$
- TDA2003	347	$£ 4.60$
- Twin TDA2003	348	£4.75
World Lamp JUNE '02	340	$£ 5.71$
Simple Audio Circuits-2 - Low, Med and High		
Input Impedance Preamplifiers (Single Trans.)	349	$£ 4.60$
Low-Noise Preamplifier (Dual Trans.)	350	£4.75
Bandpass Filter	352	£4.60
Frequency Standard Generator - Receiver	353	£4.12
- Digital	354	£6.82
\star Biopic Heartbeat Monitor	355	£5.71
Simple Audio Circuits - 3 JULY '02		
- Dual Output Power Supply	356	$£ 4.60$
- Crossover/Audio Filter	357	£4.44
Infra-Red Autoswitch	358	£4.91
\star EPE StyloPIC	359	$£ 6.50$
Rotary Combination Lock - Main Board	360	$£ 5.39$
\star Using the PIC's PCLATH Command - Software only	361	£4.91
Big-Ears Buggy AUG '02	362	$£ 5.71$
\star PIC World Clock	363	$£ 5.39$
Simple Audio Circuits-4		
Low Freq. Oscillator	364	£4.44
Resonance Detector	365	£4.28
Vinyl-To-CD Preamplifier SEPT '02	366	£5.71
\star Freebird Glider Control	367	£4.91
\star Morse Code Reader	368	£5.23
Headset Communicator ${ }^{\text {OCT }}$ '02	369	$£ 4.75$
EPE Bounty Treasure Hunter	370	£4.77
\star ® Digital I.C. Tester	371	£7.14
Transient Tracker NOV '02	372	$£ 4.75$
\star PICAXE Projects-1: Egg Timer; Dice Machine; Quiz Game Monitor (Multiboard)	373	£3.00
\star Tuning Fork \& Metronome	374	$£ 5.39$
$\star \star E P E$ Hybrid Computer - Main Board $\}$ double-	375	$£ 18.87$
- Atom Board $\}$ sided	376	£11.57
\star PICAXE Projects-2: Temperature Sensor; DEC '02		
Voltage Sensor; VU Indicator (Multiboard)	373	$£ 3.00$
\star Versatile PIC Flasher	377	$£ 5.07$

EPE SOFWARE

Software programs for EPE projects marked with a single asterisk \star are available on 3.5 inch PC-compatible disks or free from our Internet site. The following disks are available: PIC Tutorial (Mar-May '98); PIC Toolkit Mk2 V2.4d (May-Jun '99); EPE Disk 1 (Apr '95-Dec '98); EPE Disk 2 (1999); EPE Disk 3 (2000); EPE Disk 4 (2001); EPE Disk 5 (Jan 2002 issue to issue to current cover date). $\star \star$ The software for these projects is on CD-ROM. The 3.5 inch disks are $£ 3.00$ each (UK), the CD-ROMs are $£ 6.95$ (UK). Add 50 p each for overseas surface mail, and $£ 1$ each for airmail. All are available from the EPE PCB Service. All files can be downloaded free from our Internet FTP site: ftp://ftp.epemag.wimborne.co.uk.
EPE PRINTED CIRCUIT BOARD SERVICE Order Code Project Quantity Price
Name
Address

Tel. No.

VISA
\square
Everyday Practical ElectronicsMasterCard, Amex, DinersClub, Visa or Switch

Card No.
Card Exp. Date \qquad Switch Issue No

Signature.
NOTE: You can also order p.c.b.s by phone, Fax, Email or via our Internet site on a secure server:
http://www.epemag.wimborne.co.uk/shopdoor.htm

[^0]: WEB: http://www,QuasarElectronics.com Full Kit Listing, Descriptions \& Photo email: epesales@QuasarElectronics.com $\begin{gathered}\text { Full Kit Listing, Descriptions \& Photos }\end{gathered}$

